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Outline

Learning objectives are:

e Technologies for genome/exome sequencing

e Study designs for sequencing experiments

e Learn about new methodological approaches
to look for both rare variation, as well as the

combination of common and rare variation
associated with traits

e Discuss what we can learn from sequence data

as well as ethical concerns
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DNA sequence variation

Lecture 1
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| want to do a genetic
study on my phenotype of
interest. What do | do
next?
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If only it were that easy.....

What’s your research question?

What type of genetic variation are you interested in?
— Rare or common? Both? Either?

How many samples do you have access to?
— What type of samples and when/how were they extracted?
— How much DNA do you have?

How many variants do you want to (or can you) analyze?
— Sample all variation in the genome?
— Tag variants?

What’s your data analysis plan?

What'’s your timeline?

What’s your budget?

What do you wish to accomplish?
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Options for Genotyping SNPs

Affymetrix
OpenArray Affymetrix  Gene Chip
lllumina  Axio Array lllumina

Sequenom VeraCode Infinium

10-30 16-256 48-384 ~750K >906K 300K-5M
(6.0)

384 384 144-12 96 96 1-5* 96-4*

# Samples Per “Run”
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Hardware for Genotyping




Genome-wide Common Variant Panels

10,000-5 million SNPs

Affymetrix, lllumina

Random SNPs — spaced across the genome
Selected haplotype tag SNPs

Copy Number Probes

Considerations for genotyping...

— Mix up Cases/Controls/ethnic groups

— Run duplicates

— Run trios

— Run HapMap Controls (Positive Control)
— Blanks/no blanks? (Negative Control)
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Published Genome-Wide Associations through 12/2013
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Distribution of Effects

Number of Associations
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Odds Ratio (upper inclusive bound)

Marylyn Ritchie, Jan 2014



The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of
common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on
six places where the missing loot could be stashed away.
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The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of
common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on
six places where the missing loot could be stashed away.

PENNSTATE

Missing Heritability

e Under our nose

e QOut of sight

e |n the architecture

e Underground networks
Lost in diagnosis
The great beyond

Maher, B. Nature 2008; 456:18-21.




Biology is complex
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Molecular biology is complex

DNA

\ FORMATION OF

CYTOPLASM INITIATION COMPm
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Enabling discoveries with Next-
Generation GWAS

SEQ or Next-Gen
SEQ  ARRAYS Arrays

Very Rare Vai 11

Large Effect Size

15t Gen Arrays

Rare/Intermediate Variants
Intermediate Effect Size
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&ommon Variants
Small Effect Size

Common
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Timeline

. Release of complete human genome
. HapMap Consortium, collection of common variation

. Common Variant-Common Disease did not explain much
heritability

. Began to investigate rare variants

. 1000 Genomes Project
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The International HapMap

* Project started in 2003

* Designed to determine frequencies and patterns
of association between common SNPs

HapMap details

# of SNPs Targeted SNPs Populations Studied
Genotyped
Phase | 1 million Prioritized coding SNPs to attain | CEU,YRI,CHB,JPT
1 SNP for each 5-kb region
Phase I | 3 million Prioritized non-synonymous | CEU,YRI,CHB,JPT
SNPs in coding regions

Phase III | 1.4 million Prioritized rare variants CEU,YRI,CHB,JPT,
ASW,CHB,GIH,LWK,
MXL ,MKK, TSI
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The ‘Common Disease-Common Variant’ Hypothesis and
Familial Risks

Kari Hemminki'?*, Asta Forsti'?, Justo Lorenzo Bermejo'

1 Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, 2 Center for Family and Community Medicine, Karolinska
Institute, Huddinge, Sweden

Abstract

The recent large genotyping studies have identified a new repertoire of disease susceptibility loci of unknown function,
characterized by high allele frequencies and low relative risks, lending support to the common disease-common variant
(CDCV) hypothesis. The variants explain a much larger proportion of the disease etiology, measured by the population
attributable fraction, than of the familial risk. We show here that if the identified polymorphisms were markers of rarer
functional alleles they would explain a much larger proportion of the familial risk. For example, in a plausible scenario where
the marker is 10 times more common than the causative allele, the excess familial risk of the causative allele is over 10 times
higher than that of the marker allele. However, the population attributable fractions of the two alleles are equal. The

penetrance mode of the causative locus may be very difficult to deduce from the apparent penetrance mode of the marker
locus.

Citation: Hemminki K, Forsti A, Bermejo JL (2008) The ‘Common Disease-Common Variant’ Hypothesis and Familial Risks. PLoS ONE 3(6): e2504. doi:10.1371/
joumnal pone.0002504

Editor: A. Cecile J. W. Janssens, Erasmus University Medial Center, Netherlands
Received January 30, 2008; Accepted May 16, 2008; Published June 18, 2008

Copyright: © 2008 Hemminki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
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Want to learn more about GWAS?

Methods Mol Biol. 2014;1168:63-81. doi: 10.1007/978-1-4938-0847-9_5.

Bioinformatics challenges in genome-wide association studies (GWAS).
De R', Bush WS, Moore JH.

@ Author information

Abstract

Genome-wide association studies (GWAS) are a powerful tool for investigators to examine the human genome to detect genetic risk factors, reveal
the genetic architecture of diseases and open up new opportunities for treatment and prevention. However, despite its successes, GWAS have not
been able to identify genetic loci that are effective classifiers of disease, limiting their value for genetic testing. This chapter highlights the
challenges that lie ahead for GWAS in better identifying disease risk predictors, and how we may address them. In this regard, we review basic
concepts regarding GWAS, the technologies used for capturing genetic variation, the missing heritability problem, the need for efficient study design
especially for replication efforts, reducing the bias introduced into a dataset, and how to utilize new resources available, such as electronic medical
records. We also look to what lies ahead for the field, and the approaches that can be taken to realize the full potential of GWAS.

PMID: 24870131 [PubMed - indexed for MEDLINE]
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The 1000 Genomes Project

“Provide deep characterization of human genome sequence”
*Expand the investigation of causal variants to include rare variants
*Project started in 2008
*Genotype 95% of 1+% variation

Details for 1000 Genomes three pilot projects
Pilot Data sets Populations Samples Coverage
Trio 2 6 20-40x

Low coverage 4 179 2-4x
Exon (8,140 exons ~5% of exome) |7 697 20-50x
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The 1,000 Genomes Project

Sequence 1,000 genomes to complete the picture of genetic variation

Achieve a nearly complete catalog of common human genetic variants with |
frequency 1% or higher.

Project Goals

Accelerate fine-mapping efforts in gene regions
indentified through genome-wide association studies or
candidate gene studies

Improve the power of future genetic association studies
by enabling design of next-generation genotyping
microarrays that more fully represent human genetic
variation
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3. Enhance the analysis of ongoing and already completed
association studies by improving our ability to “impute”

or “predict” untyped genetic variants
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Properties of Variants Found

Trio Low coverage Exon
(different scale)

404,749 187

475,282 CHB+JPT : ASN
1,062,526 2,177,018 1,269,625 g ory

187,268

1,171,040

342,734 64,486 991,310

976,372
361,443

YRI
4,270,263

Known = present in dbSNP129
91% SNPs found in coding regions were already present in dbSNP

The 1000 Genomes Project Consortium. “A map of human genome variation from
population-scale sequencing.” Nature 2010
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ARTICLE

d0i:10.1038/nature11632

An integrated map of genetic variation
from 1,092 human genomes

The 1000 Genomes Project Consortium*

By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to
build a resource d the genetic contribution to disease. Here we describe them
individuals fromﬁm?nstructed usmg a combm.mon of low coverage whole-genome and exome
sequencing. By dev i ; ; ms and diverse data sources, we
provide a validated haplotype map of 38 million single nucleotlde polvmorpmsms 1.4 million short insertions and
deletions, and more th: : . g : erent populations carry different
profiles of rare and common variants, and that low- frequency variants show substantial geographic differentiation,
which is further increased by the action of purifying selection. We show that evolutionary conservation and coding
consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially
across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites,
such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98°% of
accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and
low-frequency variants in individuals from diverse, including admixed, populations.

PENNSTATE
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Better Reference Catalog?

Which database should be used as a reference?
— Which database was most recently released?
— Which contains the most variants?
— Which ethnicities were included?
— What is the allele frequency distribution captured?
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New Content for Next-gen GWAS Arrays

Rich content to explore new hypotheses and enable new discoveries

Sequence to discover SNPs >1% MAF (1000-Genomes project)
Leverage the power of LD to select tagSNPs and remove redundancy

Include progressively more SNPs at lower allele frequencies (5%, 2.5%, 1%)

Tag SNPs
Approx. needed for | Lower limit of
Cumulative SNPs max allele frequency | % variation tagged
Project found coverage targeted (r2>0.8)

HapMap 2003-2007

1kG Pilot Project | 2008-2009

1kG Full Project 2010




The spectrum of known variation is
expanding at an unprecedented

1kGP Pilot Phase — 17 Million SNPs

NN

| HapMap - 3.5 Million
SNPs
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...and resetting the reference point
for GWAS.

ﬁ |
| j

PENN E



OPEN a ACCESS Freely available online

Synopsis

So maybe it’s in the rare(r) variants

P1LOS sroLoay

Common Disease, Multiple Rare (and Distant) Variants

Richard Robinson*

Freelance Science Writer, Sherbom, Massachusetts, United States of America

Genome-wide association (GWA) stud-
ies have emerged as a potentially power-
ful tool for discovery of new genes for
common diseases, such as Alzheimer’s
disease and stroke. But the
interpretation of GWA findings might be
incorrect in many cases, according to a
new study by Samuel Dickson, David

common

Goldstein, and colleagues in this issue of

PlLoS Biology. Their results suggest that the
signals in these studies may not always be
pointing to a few common gene variants,
as assumed by

most researchers, but

instead to many rare variants, each of

which causes relatively few cases, and each
of which may be relatively far away from
the site identified in the GWA study.

A GWA study compares DNA sequence

PENNSTATE

iant”’ hypothesis), and the difficulty in
finding culprit genes was that these modest
effects make the genes very difficult to
recognize.

But an alternative explanation is also
possible, that the disease s caused by

multiple strong-effect variants, each of

which s found in only a few people (the
“common disease, many rare variants’
hypothesis). Instead of the common sign-
post pointing to a common weak-effect
variant, it might be pointing to many
strong-effect variants. To distinguish this
scenario from the common interpretation,
the authors refer to assodations between
rare higher-impact variants and common
markers as “synthetic associations’’.

In the world of synthetic associations, the

e Contain significant common variant
s Contain causal vanant
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Other reference panels

Publications Download data Requestdata Browse data  Wiki

Ultra-sharp genetic group portrait of News
the Dutch GONL n the Dutch press

GoNL in Nature Genetics
Prizes at Genetics Retreat 2014
Search GoNL snps online
Position paper online

What genetic variation is to be found in the Dutch indigenous population? Detailed knowledge about
this is not only interesting in itself, it also helps to extract useful biomedical information from Dutch
biobanks. The Dutch biobank collaboration BBMRI-NL has initiated the extensive Rainbow Project
‘Genome of the Netherlands” (GoNL) because it offers unique opportunities for science and for the
development of new treatments and diagnostic techniques. A close-up look at the DNA of 750 Dutch
people-250 trio's of two parents and an adult child-plus a global genetic profile of large numbers of
Dutch will disclose a wealth of new information, new insights, and possible applications.

Archive

BioBank BioBank = July 2014
BioBank Groningen Leiden BioBank March 2014
Rotterdam

Amsterdam July 2013
June 2013

PENNSTATE

w http://www.nlgenome.nl/




Other reference panels

q GOOS[Q CIOUd P|athl’m Search this site n My console a

Why Google  Products Solutions  Pricing Customers Documentation Support Partners Free Trial Contact Sales

Products > Documentation > Google Genomics

Google Genomics 8+ 2

What is Google Genomics?

& Google Genomics

» Pricing and Quotas

 Storing Genomio Data Explore genetic variation interactively. Compare

» Processing Genomic Data entire cohorts in seconds with SQL-like queries.
Compute transition/transversion ratios, genome-wide

» Exploring Genomic Data L )
association, allelic frequency and more.

» Sharing Genomic Data I/O Bytes

Process big genomic data easily. Run batch analyses
like principal component analysis and Hardy-
* Developera Gulde Weinberg equilibrium on as many samples as you like,
in minutes or hours, with just a little code.
» Genomics API
) Use Google's infrastructure and big data expertise.
Genomics Tools Store one genome or a million using Google

Support Genomics and take advantage of the same infrastructure that powers Search, Maps, YouTube, Gmail and Drive.
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Other reference panels

Rare Genetic Variants in Health and Disease (2010-2013)

What is UK10K? [ wowe

GOALS
The UK10K project will enable researchers in the UK and beyond to better

understand the link between low-frequency and rare genetic changes, and
human disease caused by harmful changes to the proteins the body makes. IRy
DATA ACCESS

RESEARCHERS

Although many hundreds of genes that are involved in causing 1 .
2

disease have already been identified, it is believed that many ,
more remain to be discovered. The UK10K project aims to help J ] ETHICS
uncover them by studying the genetic code of 10,000 people in

much finer detail than ever before.

FUNDING
Wellcome Library,

Londen VACANCIES

Project Design CONSORTIUM

) . PUBLICATIONS
Not all genetic changes are harmful or lead to disease, so the

project is taking a two-pronged approach to identify rare variants ot
and their effects: RSt CONTACT US

POSTERS

LOGIN

« by studying and comparing the DNA of 4,000 people whose physical
characteristics are well documented, the project aims to identify those
changes that have no discernible effect and those that may be linked to a
particular disease;

PENNSTATE
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I’m interested in other variation
besides SNPs...

Perhaps we should look at CNVs

PENNSTATE
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CNVs are Associated with Various Phenotypes

Copy number polymorphism in Fcgr3 predisposes to
glomerulonephritis in rats and humans

Timothy ). Aitrman’, Rong Dong'*, Timothy ). Vyse™*, Penny J. Norsworthy'*, Michelle D. Johnson ',

Jennifer Smith’, Jonathan Mangion', Cheri Roberton-Lowe ', Amy ). Marshall', Enrico Petretto

Matthew D. Modges', Gurjeet Bhangal’, Sheetal G. Patel’, Kelly Shechan-Rooney’, Mark Duda’~, Paul R. Cook".
David ). Evans’, Jan Domin’, Jonathan Flint*, Joseph ). Boyle”, Charles D. Pusey & H Terence Cook™ Masure 2006

The Influence of CCL3L7T Gene-

Containing Segmental Duplications Strong Association of De Novo Copy

on HIV-1/AIDS Susceptibility Number Mutations with Autism
Jonathan Sebat ™ B Lakshinl,' Dheera) Mathotra ' Jesmifer Troge, ™ Christa Lese-Martin,”

Gonz . Mem Te Te,
.:”.:..: Ma ——— 20 g —_ :“.?'., wc Id.(.u'- e Tom Walsh.” Borls Yamrem, ' Seungtal Yoon ' Ales Krasaite. ' Jude Kendall® Anthony Leotta,’
".." Y ‘.' v . . 0o Deepa Pal’ Ray Zhang.” Yoon-Ha Lee.” James Wicks,* Sarah | Spence.* Annette 1. Lee.”
Robert | Nibbs.'! Barry L Freedman.®! Mardon P. Quinones.'! Kaiga Puura® Terko Lebtimitl.” David Ledbetter,” Peter K. Gregersen.” Joel Bregman ¢
Michael | Bamshad” Krishne K. Murthy * Srad M. Rovin ™ James S Sutclitte.” Vaideht Jobanputra, *® Wendy Chang.*® Dorethy Warburton, *
Wikliam Bradiey " ” Robert A Clark.' Stephanie A. Anderson ™" Mary-Clatre King.” David Skuse.’* Danlel M, Geschwind ™ 1. Conrad Gilllam,**
Robert | O'Connell™ ™ Brian K. Agan "™ Kenny Ye.'* Michael Wigher"t
] " :
“:":: - "r'“' ..:‘..W ““::J:.': 2005 VOL 307 SCIENCE SCIENCE VOL 316 20 APRIL 2007
thew J. Dolan, § Sunll K. §

A Chromosome 8 Gene-Cluster Polymorphism with Low Human

Beta-Defensin 2 Gene Copy Number Predisposes to Crohn

Disease of the Colon Rare Structural Variants Disrupt
Discovery of previously unidentified genomic disorders Multiple Genes in Neurodevelopmental
from the duplication architecture of the human genome Pathways in Schizophrenia

Andrew | Sharp', Sierra Hansen', Rebeccn R Seleer’, Ze Cheng', Regina Rogan®, Jane A Hurnt*, Tom Wann '’ Joa M. McOIlIA, "1 Shuse T WCCIENY,© Anjend ML ASamcton,
Helen Stewart?, Sue M Price*, Edwand Blair', Rooul C Henndham ™, Carric A Fiupatrick”, Sersh U. Piesce,” Grog M. Cooper,” Alex 5. Nord," Mary Nusende, ' Dheerej Malbotes *
Rick Sepraves™, Told A Richmoed”, Cheryl Guiver', Dusse G Albertson™®, Danicl Pinke®, Peggy S Eis’, Ashiahek Ohandari,” Sundey M Stray,' Caitlin I Rippey,* Patricis Roccancs,* Vied Makaroy,*

Stuart Schwartz”, Samantha | 1 Knight' & Dvan & Dichlar! K Lahbvnni* Radwrt 1 Fonliong.” thamarke Sibon " Tharmes Somlieny * Rarry Mo e ”
Nilie Gongloy. ™ Phiips Bolon ™ Krivten Frbsdionml ™ 1otte Manry ™ Prden G boman™ Redut Loy *

Pogen Ohen.” Som vk, ™ Carl Bt ® Fram £ Piivine. ¥ Pasl 4 Madione, ® Gandey P, Nobum,”
- =
Asdrew B Singieten, 't vang K Lee,’ poeamn L magopert’ Mary Clamse Kmg T Jasatran senar’
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nature Vol 4641 April 2010 doi:10.1038/nature08516

ARTICLES

Origins and functional impact of copy
number variation in the human genome

Donald F. Conrad'*, Dalila Pinto’*, Richard Redon'~, Lars Feuk™*, Omer Gokcumen’, Yujun Zhang', Jan Aerts',
T. Daniel Andrews', Chris Barnes', Peter Campbell', Tomas Fitzgerald', Min Hu', Chun Hwa |hm”,

Kati Kristiansson’, Daniel G. MacArthur’, Jeffrey R. MacDonald?, Ifejinelo Onyiah', Andy Wing Chun Pang?,
Sam Robson', Kathy Stirrups', Armand Valsesia', Klaudia Walter', John Wei*, Wellcome Trust Case Control
Consortiumt, Chris Tyler-Smith', Nigel P. Carter', Charles Lee’, Stephen W. Scherer’® & Matthew E. Hurles'

Vol 4641 April 2010/ doi:10.1038 /nature08979

ARTICLES

Genome-wide association study of CNVsin
16,000 cases of eight common diseases
and 3,000 shared controls

PENNSTAT[ The Wellcome Trust Case Control Consortium*




“Take-Home” Quotes from CNV Paper

 “We have demonstrated that high-confidence CNV calls can
be assigned in large, real-world case-control samples for a
substantial proportion of the common CNVs estimated to
be present in the human genome.

We have identified directly several CNV loci that are
associated with common disease. Such loci could
contribute to disease pathogenesis.

However, the loci identified are well tagged by SNPs and,
hence, the associations can be, and were, detected
indirectly via SNP association studies.

Among the CNVs that we could type well, those not well
tagged by SNPs have the same overall association
properties as those which are well tagged.”

Vol 464 | 1 April 2010|d0i:10.1038/nature08979
PENNSTATE




GWAS is fine, and CNVs are cool,
but | want to detect ALL variation
in my samples!

* SEQUENCE is the SOLUTION
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Questions???
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