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What is bioinformatics?

* Conceptualizing biology in terms of molecular and
applying informatics techniques to understand and
organize the information associated with these
molecules on a large scale. —Luscombe et al. 2001

* Application of computational techniques to analyze
information associated with biomolecules on a
large scale

* Established as a discipline in molecular biology

* Wide range of subject areas
e Structural biology, genomics, transcriptomics, etc.

Luscombe et al., Yearbook of Medical Informatics 2001



Aims of bioinformatics

1. Organize data in a way to allow researchers to
access existing information and submit new
information as it is produced

2. Develop tools and resources to aid in the
analyses of data

3. Use these tools to analyze the data and interpret
the results in a biologically meaningful manner

Luscombe et al., Yearbook of Medical Informatics 2001



Data source

Data size

Bioinformatics topics

Raw DNA sequence

Protein sequence

I 1.5 million sequences
{12.5 billion bases)

400,000 sequences
(=300 amino acids
each)

Separating coding and non-coding regions
Identification of introns and exons

Gene product prediction
Forensic analysis

Sequence comparison algorithms
Multiple sequence alignments algorithms
Identification of conserved sequence motifs

Macromolecular 1 5,000 structures Secondary, tertiary structure prediction
structure {~1,000 atomic 3D structural alignment algorithms
coordinates each) Frotein geometry measurements
Surface and volume shape calculations
Intermolecular interactions
Molecular simulations
{force-field calculations,
molecular movemenis,
docking predictions)
Genomes 300 complete genomes | Characterisation of repeats
(1.5 million — Structural assignments to genes
3 hillion bases each) Phylogenetic analysis
Cienomic-scale censuses
(characterisation of protein content, metabolic pathways)
Linkage analysis relating specific genes to diseases
(iene expression largest; ~20 time point | Correlating expression patterns
measurements for Mapping expression data to sequence, structural and
~6,000 genes in yeast biochemical data
Other data
Literature 11 million citations Digital libraries for automated bibliographical searches

Metabolic pathways

Luscombe et al., Yearbook of Medicallr

Enowledge databases of data from literature

J Pathway simulations

formatics 2001



That was then....

€ 2007 Schattaver GmbH

What is Bioinformatics?
A Proposed Definition and Overview of the Field

N. M. Luscombe, D. Greenbaum, M. Gerstein
Department of Molecular Biophysics and Biochemistry
Yale University, New Haven, USA

Summary 1. Introduction
Background: The recent flood of data from genome

sequences and functional genomics has given rise to Biological data are being produced a 2
new field, bivinformatics, which combines elements

of biology and computer sience. Shenomenal cate 1], For example a3
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This is now ...
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“I think you’ll find that mine is bigger”




What is Big Data?

* Big data is a blanket term for any collection of data
sets so large and complex that it becomes difficult to
process using on-hand database management tools or
traditional data processing applications. — Wikipedia

* Data sets that are too large and complex to manipulate
or interrogate with standard methods or tools. — Oxford
Dictionary

 Computers, data sets, typically consisting of billions or
trillions of records, that are so vast and complex that
they require new and powerful computational
resources to process. — Dictionary.com



Where do we see Big Data?

To put the data explosion in context, consider this. Every
minute of every day we create:

e More than 204 million email messages | Bl -
. : J

* Over 2 million Google search queries -’

. : You

48 hours of new YouTube videos Tube

684,000 bits of content shared on Facebook 'i

e More than 100,000 tweets

http://www.webopedia.com/quick ref/just-how-much-data-is-out-there.html- March, 2014



http://www.webopedia.com/quick_ref/just-how-much-data-is-out-there.html

Where do we see Big Data?
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90 PB (pedabytes) 300 PB (pedabytes)
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Exabytes of data



Exaponential
Quantity of global digital data, exabytes

230

Source: EMC/IDC Digital Universe Study, 2011




Big Data: Is it all about size?

ARE qoV
ENJOYING IT 2

“I think you’ll find that mine is bigger”

Depends on your frame of reference



four

Thet

Data at Rest

Terabytes to
exabytes of existing
data to process

Data in Motion

Streaming data,
milliseconds to
seconds to respond

e V’s of Big Data

Data in Many
Forms
Structured,

unstructured, text,
multimedia

Data in Doubt

Uncertainty due to
data inconsistency
& incompleteness,
ambiguities, latency,
deception, model
approximations

»Http://www.datasciénéecentraI.com/profiklvés"/blogs/data-veracity




As of 2011, the global size of

By 2014, it's anticipated

40 ZETTABYTES It's estimated that data in healthcare was there will be

[ 43 TRILLION GIGABYTES | 2005 2.5 QUINTILLION BYTES estimated {obe 420 MILLION

of data will be created by (2.3 TRILLION GIGABYTES T e 150 EXABYTES WEARABLE, WIRELESS
2020, an increase of 300 2020 O of data are created each day [ 161 BILLION GIGABYTES ] HEALTH MONITORS

times from 2005

4 BILLION+
HOURS OF VIDEO

are watched on
YouTube each month

6 BILLION
PEOPLE

have cell
phones
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traffic patterns and mi OW! ve P]ECES OF CONTENT
1d medical ds 3 g are shared on Facebook
e every month

Most companies in the
U.S. have at least
a, and ho

1[]0 TERABYTES massive amounts of data be used?
[ 100,000 GIGABYTES |
of data stored As a leader in the se IBM data scientists
k big data into four dimensions: Volume,

Velocity, Variety and Veracity

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

WORLD POPULATION: 7 BILLION

Modern cars have close to

The New York Stock Exchange Depending on the industry and organization, big 1IN 3 BUSINESS Poor data quality costs the US

captures @ ) > 100 SENSORS s information fre LEADERS ' economy around

1 TB UF TRADE \ (@ that monitor items such as internal and external source 1ast < g ,' . . $3.1 TRILLION A YEAR
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Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS




Effective Use of Big Data

* The use of big data effectively is critical to reap benefit
from the massive resources

* Online retail — compile history of every click to
recommend additional purchases

amazoncom

* Industry buzzwords:
e “streaming data”
* “complex event processing”



Google Flu

* In 2009, Google published in Nature
* Google search queries to track influenza-like illness

* Relative frequency of certain queries is highly
correlated with the percentage of physician visits in
which a patient presents with influenza-like symptoms

e Accurately estimate the current level of weekly
influenza activity in each region of the United States

* Reporting lag of about one day

e Better than the Centers for Disease Control
e More than a week



Google Flu

* Few months after announcing Google Flu, the
world was hit with the 2009 swine flu pandemic

e Caused by a novel strain of HIN1 influenza

* Google Flu missed it

* A bigger problem with Google Flu, though, is that
most people who think they have “the flu” do not

* The vast majority of doctors’ office visits for flu-like
symptoms turn out to be other viruses



What happened?

* Unpredictability
* Complexity

* Not trying to determine what caused flu

 Correlation not causation



Challenges

* Big data is big
* Seeing an inversion in priorities
e Rather than moving data, we are moving programs to
where the data are

* Big data is messy
* “80% of the effort involved in dealing with data is cleaning
it up” — Pete Warden

* Emergence of a new field

* Data science
 Combines math, computer science, and scientific instinct



Challenges

* Capture

* Storage

* Curation

* Search

* Sharing

* Transfer

* Analysis

* Visualization



Big Data

e Data alone does not answer all questions
* More data alone cannot solve all problems

* Hypothesis generating strategies
e Paradigm shift from hypothesis testing science



Formula one race car

Nascar headquarters
200 data feeds
5GB per lap

Joel Dudley, Mt. Sinai School of Medicine



Big Data

Blood samples for genetic screening are

collected from a heel
newborn is discharge

g

rick before the
from the hospital.
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Bioinformatics is big data

 Ability to generate data is at an unprecedented rate

* High-throughput technologies have moved
scientific disciplines leaps and bounds

* Bioinformatics as a discipline is emerging,
expanding, running to keep up with the data



ow did we get here?
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articles

Finishing the euchromatic sequence of
the human genome

International Human Genome Sequencing Gonsortium*

ist of authors and their affiliations appears in the Supplementary Information
* A list th d t liati ppe the Suppl tary Inf ti

The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about
human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic
portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence
with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome
sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ~99% of the euchromatic genome and
is accurate to an error rate of —1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental
duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly
improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the
human genome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a
firm foundation for biomedical research in the decades ahead.

NATURE | VOL 431| 21 OCTOBER 2004 | www.nature.com/nature




Goal of the Human Genome Project (HGP)

* To obtain a highly accurate sequence of the vast
majority of the euchromatic portion of the human
genome

e Launched in 1990

* International Human Genome Sequencing Consortium
(IHGSC) formed

* 20 centers
* 6 countries

* Manuscript contained 14 pages of authors (in
supplemental material)



Human Genome Project (HGP)

e 3 Phases in HGP

1) Preliminary phase that developed and refined
approaches

2) Draft phase that yielded 90% of the information
3) Finishing phase that yielded 99% of the information

* 1% of the euchromatic genome remains



Human Genome Project (HGP)

* Key challenges

1) Systematicidentification of all genetic polymorphisms
carried in human populations

e Startedin October, 2002
 First Haplotype Map published in October, 2005



Vol 437|27 October 2005|doi:10.1038/nature04226 namre

ARTICLES

A haplotype map of the human genome

The International HapMap Consortium*

Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease. Here we report a
public database of common variation in the human genome: more than one million single nucleotide polymorphisms
(SNPs) for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations,
including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted.
These data document the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low
haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. We show how the
HapMap resource can guide the design and analysis of genetic association studies, shed light on structural variation and
recombination, and identify loci that may have been subject to natural selection during human evolution.



Human Genome Project (HGP)

* Key challenges

2)

3)

Systematicidentification of all functional elementsin the
human genome including genes, proteins, regulatory
controls, and structure elements

Systematicidentification of all the “modules” in which
genes and proteins function together

Requires the study of expression, localization and interactionin a
spatialand temporal context

Launched in September, 2003
Pilot project published in June, 2007



Vol 44714 June 2007 | doi:10.1038/nature05874 naware

ARTICLES

Identification and analysis of functional
elements in 1% of the human genome by
the ENCODE pilot project

The ENCODE Project Consortium*

Wereport the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the
human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a
number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human
genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively
transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts,
and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new
understanding about transcription start sites, including their relationship to specific regulatory sequences and features of
chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged,
including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of
information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has
yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these
studies are defining a path for pursuit of a more comprehensive characterization of human genome function.



Perspective

Moore's Law

|||||Im|||““||||” National Human

||||| ||||| Genome Research
Institute

genome.gov/sequencingcosts
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Perspective

NOW

The Whitehead/MIT Center for Genome Research Oxford Nanopore



PERSPECTIVE
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Charting a course for genomic medicine
from base pairs to bedside

Eric ). Green', Mark 5. Guyer! & National Human Genome Research Institute*

Understanding Understanding Understanding Advancing Improving the
the structure of the biciogy of the bioiogy of e sclence of eftactveness of

18602008 |+
Human Genome Project |

20062010 »

2011-2020

Beyond 2020




DNA sequencing changed biology in many ways...

1. Evolutionary and comparative genomics

-

r b . .-“ |
= Rﬂbblt - . - .
Orangutan Cow Armadlllo Monodelphls
K S99
%
‘ Gorlla Opossum  Wallaby

Mouse lemur Mouse Platypus

Adapted from Elliot Marguiles’ 2/9/2010 NHGRI talk (http://www.genome.gov/12514288)



DNA sequencing changed biology in many ways...

2. Understanding health and disease

Table 1 | Potential frequencies of causal variants in complex traits

Variant class

Very common
Less common
Rare (but not

private)

Private

Minor allele frequency

Between 5 and 50%
Between 1 and 5%

Less than 1% but still polymorphicin
one or more major human populations

Restricted to probands and immediate
relatives

Implications for analysis

Amenable to association analysis using current genome-wide
association methods

Amenable to association analysis using variants catalogued
in the 1000 Genomes Project

Amenable to framework of extreme phenotype
resequencing, as well as co-segregation in families

Difficult to analyse except through co-segregation in families.
Aslinkage evidence will (by definition) be modest, discovery
would be limited to the most recognizable of variants



DNA sequencing changed biology in many ways...

3. Identifying and quantifying rare transcripts,
splicing, etc.

NATURE METHODS | VOL.5 NO.1 | JANUARY 2008 | 19

Sequence census methods for functional genomics
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DNA sequencing changed biology in many ways...

Table 2 Applications of next-generation sequencing

Category Examples of applications Refs
Complete genome resequencing Comprehensive polymorphism and mutation discovery 44
in individual human genomes
Reduced representation sequencing  Large-scale polymorphism discovery 4k
Targeted genomic resequencing Targeted polymorphism and mutation discovery 4652
Paired end sequencing Discovery of inherited and acquired structural variation 53,54
Metagenomic sequencing Discovery of infectious and commensal flora 55
Transcriptome sequencing Quantification of gene expression and alternative hE6-63
splicing; transcript annotation; discovery of transcribed
SNPs or somatic mutations
amall RMA seguencing microRMNA profiling 64
aequencing of bisulfite-treated DNA  Determining patterns of cytosine methylation in &0,65,66
genomic DNA
Chromatin immunoprecipitation— Genome-wide mapping of protein-DMA interactions 6770
sequencing (ChIP-Seq)
Muclease fragmentation and Mucleosome positioning 69
sequencing
Molecular barcoding Multiplex sequencing of samples from multiple 61,71

individuals

Shendure and Ji, Nat. Biotech, 2008



DNA sequencing changed biology in many ways...

4. Identifying or classifying species (viruses, bacteria, etc).

Int. J. Mol. Sci. 2011, 12, 7861-7884; doi:10.3390/ijms12117861
OPEN ACCESS

Viruses 2011, 3. 1849-1869: doi:10.3390/v3101849

viruses

Review - 1=
ISSN 1999-4915
Appl icati www.mdpi.com/journal/viruses
Diagn(}stj Review
Luisa Barzon Next (Zenerationn Seanencino Technalacies far Inceet Virng
Dis .y @ ACCESS Freely available online ' PloS one
Sijul

Direct Metagenomic Detection of Viral Pathogens in
Nasal and Fecal Specimens Using an Unbiased High-
Throughput Sequencing Approach

Shota Nakamura'®, Cheng-Song Yang®>®, Naomi Sakon®, Mayo Ueda?®>, Takahiro Tougan®, Akifumi

Yamashita', Naohisa Goto', Kazuo Takahashi? Teruo Yasunaga', Kazuyoshi lkuta?, Tetsuya Mizutani®,
Yoshiko Okamoto’, Michihira Tagami®, Ryoji Morita®, Norihiro Maeda®, Jun Kawai® Yoshihide
Hayashizaki®, Yoshiyuki Nagai’, Toshihiro Horii®>, Tetsuya lida®, Takaaki Nakaya®*



History of Nucleic Acid Sequencing

Mbescher: Discovers DNA

Avery: Proposes DNA a “Cenetic Material®

Efficiency

. Watson & Crniclc Double Helix Stroctore of DNA
(bp/person'vear)

Holley: Sequences Yeast t(ENAe

Wi Sequences ) Cobesive End DNA

Sapger: Dedesty Chain Termination
Cilbert: Chemical Desradation

Messimg: M13 Clomins

Hood ef al.: Partial Anfomation

f——er e

* Cycle Sequencng
* Improved Sequencims Enyvimes
* Improved Floorescent Detection Schemes

=t

f
2
8

Adapted from Elliot Marguiles’ 2/9/2010 NHGRI talk (http://www.genome.gov/12514288)



15t Generation: Sanger Sequencing
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Shendure and Ji, Nat. Biotech, 2008




2"d Generation: “Next Generation” Sequencing

Clonally amplified single molecules for sequencing

Applied
Biosystems

) WA

454 lllumina HiSeq 2000 SOLID

Pyrosequencing Reversible Terminator Chemistry Ligation-based extension

Adapted from Elliot Marguiles’ 2/9/2010 NHGRI talk (http://www.genome.gov/12514288)



3rd Generation: Next-Next Generation Sequencing

True Single Molecule Sequencing

PACIFI

BIOSCIENCES

HeliScope SMRT Technology



The Waves of Next-Gen Sequencing

Next Generation Sequencers

Second Wave

First Wave
4 I
Roche 454 IHlumina —
Tech
Genome .
GS FLX SOLID
Analyzer
GS HiSeq SOLID 5500
Junior GAllx SOLiD 5500x|
GAlle
HiScanSQ
miSeq

4 \
. Pacific
Helicos . .
Blosciences
HeliScope SMRT
Third Wave
4 \
lon Life Tech
Torrent SMS




The Rate of DNA Sequencing Continues to Accelerate...

Single
molecula?
1,000,000,000
o 100,000,000 - Massively parallel
= sequencing
é 10,000,000 4 Short-read
E sequencers
» 1,000,000
a
& 100,0000 - : : Microwell
g Capillary sequencing sitiicy koo
| -
Py 10.000
% Gel-based systems
@ 1,000 - Second-generation
8 Automated capiliary sequancer
2 100 siab gel First-genecation
< capillary
10-

1980 1985 1990 1995 2000 2005 2010 Future
Year

Figure 3 | Improvements in the rate of DNA sequencing over the past 30
years and into the future. From slab gels to capillary sequencing and
second-generation sequencing technologies, there has been a more than a
million-fold improvement in the rate of sequence generation over this time
scale,

MR Stratton et al. Nature 458, 719-724 (2009) doi:10.1038/nature07943



... While Sequencing Costs Decline

Cost per Genome

$100,000,000 ;
$10,000,000 Moore's Law

$1,000,000

$100,000 ;

||||l|““"““\|“H National Human

$10,000 Wiz aill} Genome Research
] Institute

genome.gov/sequencingcosts

Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Large-Scale Genome Sequencing Program
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AFPLICATIUNS OF NEXT-GENERATION SEQUENCING

rSequencing technologies —
the next generation

Michael L. Metzker**

e Akin to early days of PCR
 Enormous volumes of data cheaply
e Different scale, however
* 1 billion reads per run



Trade-offs

3rd Gen. _
lHlumina PacBio
. 222
Gb ABIU\"ETEth nd Gen. 2?7
Helicos
5
a
% Mb
-
/ E
=
Note:
orders of Capillary-based
magnitude (AB) 1st Gen.
kb

~30 ~300 ~700
Length of Read (bp)

_ Amount of Sequence Generated

Throughput = Unit of Time or Cost



Comparison of methods

TasLE 1: (a) Advantage and mechanism of sequencers. (b) Components and cost of sequencers. (c) Application of sequencers.

(a)

Sequencer 454 GS FLX HiSeq 2000 SOLiDv4 Sanger 3730xl
Sequencing : Sequencing by Ligation and two-base Dideoxy chain
mechanism Pyrosequencing synthesis coding termination
. - - : 50 + 35bp or

Read length 700 bp 50SE, 50PE, 101PE 50 + 50 bp 400~900 bp
Accuracy 99.9%* 98%, (100PE) 99.94% *raw data 99.999%
Reads 1M 3G 1200~1400 M —
Output data/run 0.7 Gb 600 Gb 120 Gb 1.9~84 Kb
Time/ 24 H 3~10 D 7 Days for SE 20 Mins~3H

ime/run ours : ays 14 Days for PE ins~3 Hours

X B High quality, long
Advantage Read length, fast High throughput Accuracy read length
Error rate with

Disadvantage polybase more than 6, Short read assembly Short read assembly High cost low

high cost, low
throughput

throughput

Liu et al

. Journal of Biomedicine and Biotechnology. Volume 2012
(2012), Article ID 251364, 11 pages



Comparison of methods

(b)

Sequencers 454 GS FLX HiSeq 2000 SOLiDv4 3730xl

Inst t pri Instrument $500,000, IE;E&E}}% ?190’000’ Instrument $495,000, hésm:lgil:t S%E’g[;ﬂ;
nstrument price $7000 per run 30x) human $15,000/100 Gb about $4 per [

genome reaction

CPU 2* Intel Xeon X5675 2* Intel Xeon X5560 8% processor 2.0 GHz Pentium IV 3.0 GHz
Memory 48 GB 48 GB 16 GB 1 GB

Hard disk 1.1TB 3TB 10TB 280GB
Automat'lon in library Yes Yes Yes No
preparation

Other required device REM e system cBot system EZ beads system No
Cost/million bases $10 £0.07 $0.13 $2400

Liu et al. Journal of Biomedicineand Biotechnology. Volume 2012

(2012), Article ID 251364, 11 pages



Comparison of methods

(c)

Sequencers 454 GSFLX HiSeq 2000 SOLiDv4 3730xl
Resequencing Yes Yes

De novo Yes Yes Yes
Cancer Yes Yes Yes

Array Yes Yes Yes Yes
High GC sample Yes Yes Yes

Bacterial Yes Yes Yes

Large genome Yes Yes

Mutation detection Yes Yes Yes Yes

Liu et al. Journal of Biomedicineand Biotechnology. Volume 2012
(2012), Article ID 251364, 11 pages



Mardis Genome Medicine 2010, 2:84
http://genomemedicine.com/content/2/11/84

. Genome Medicine

MUSINGS
The $1,000 genome, the $100,000 analysis?

Elaine R Mardis*

Having recently attended the Personal Genomes meeting
at Cold Spring Harbor Laboratories (I was an organizer
this year), I was struck by the number of talks that
described the use of whole-genome sequencing and
analysis to reveal the genetic basis of disease in patients.
These patients included a child with irritable bowel

required for it to occur. I therefore offer the following as
food for thought.

One source of difficulty in wusing resequencing
approaches for diagnosis centers on the need to improve
the quality and completeness of the human reference
genome. In terms of quality, it is clear that the clone-

There is job security in bioinformatics...



Data source

Data size

Bioinformatics topics

Updated numbers, 2014

Protein sequence

Macromolecular
structure

Gremomes

(jene expression

Raw DNA sequence

I 1.5 million sequences
{12.5 billion bases)

400,000 sequences
(=300 amino acids
each)

| 5,000 structures
{~1,000 atomic
coordinates each)

300 complete genomes
(1.6 million -
3 billion bases each)

largest; ~20 time point
measurements for
6,000 genes In yeast

Separating coding and non-coding regions
Identification of introns and exons

Cene product prediction

Forensic analysis

Sequence comparison algorithms
Pultiple sequence alignments algorithms
Identification of conserved sequence motifs

Secondary, tertiary structure prediction
3D structural alignment algorithms
Protein geomietry measurements
Surface and volume shape calculations
Intermolecular interactions

Maolecular simulations

[ force-field calculations,
rolecular movements,
docking predictions)

Characterisation of repeats

Structural assignments to genes

Phylogenetic analysis

Genomic-scale censuses

(characterisation of protein content, metabolic pathways)
Linkage analysis relating specific genes to diseases

Correlating expression patterns
Mapping expression data to sequence, structural and
biochemical data

Cither data

L.terature

I | | Yearbook of Medical Inf s 2001

Metabolic pathways

11 million citations

Digital libraries for automated bibliographical searches
Enowledge databases of data from literature

Pathway simulations




Intro to Bioinformatics

4 day short course

Tuesday, September 30, 2014

* Retrieving information on genes and proteins from
biological and genomic databases

* Predicting genes from DNA sequences

* |dentifying promoters and regulatory elements in
DNA sequences



Intro to Bioinformatics

4 day short course

Wednesday, October 1, 2014

* Analyzing protein sequences
 Comparing protein and DNA sequences
* Visualizing and analyzing protein structures

* Functional annotations and predictions
* Predict function
* Compare/contrast functional prediction tools



Intro to Bioinformatics

4 day short course

Thursday, October 2, 2014

* Place function in the context of biological pathways
* Pulling information from multiple sources together

* Methods and Applications
* Genome-phenome analysis



Intro to Bioinformatics

4 day short course

Friday, October 3, 2014

* Bioinformatics pipelines and workflows

* Understanding the problems associated with
analyzing large datasets

* Resources to go to in the future = the field moves
fast



Questions???
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