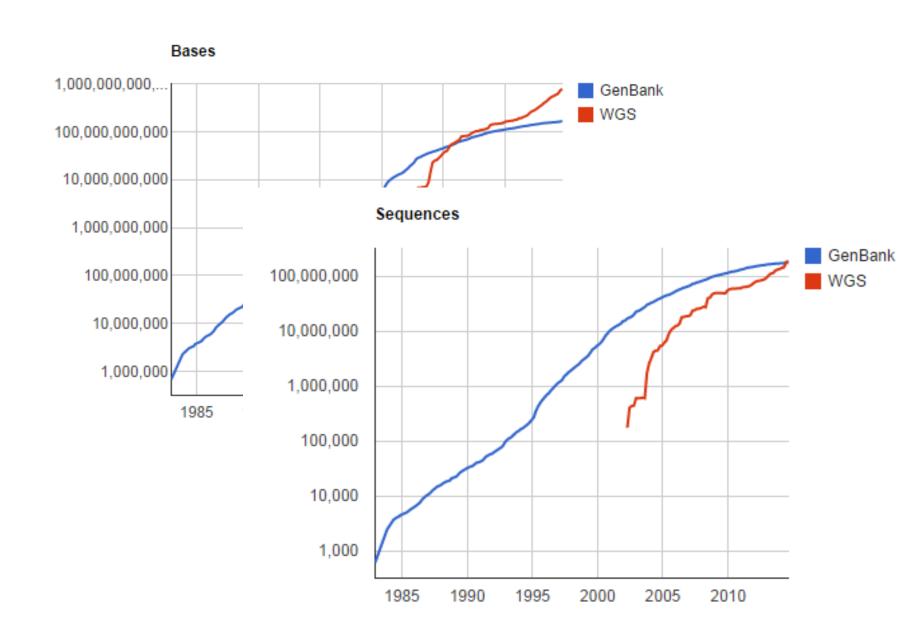
# Retrieving information on genes and proteins from biological and genomic databases

Marylyn D Ritchie, PhD
Professor, Biochemistry and Molecular Biology
Director, Center for Systems Genomics
The Pennsylvania State University






# GenBank

- Repository of nucleic acid sequences
- As of 2001, held 9.5 billion bases in 8.2 million entries

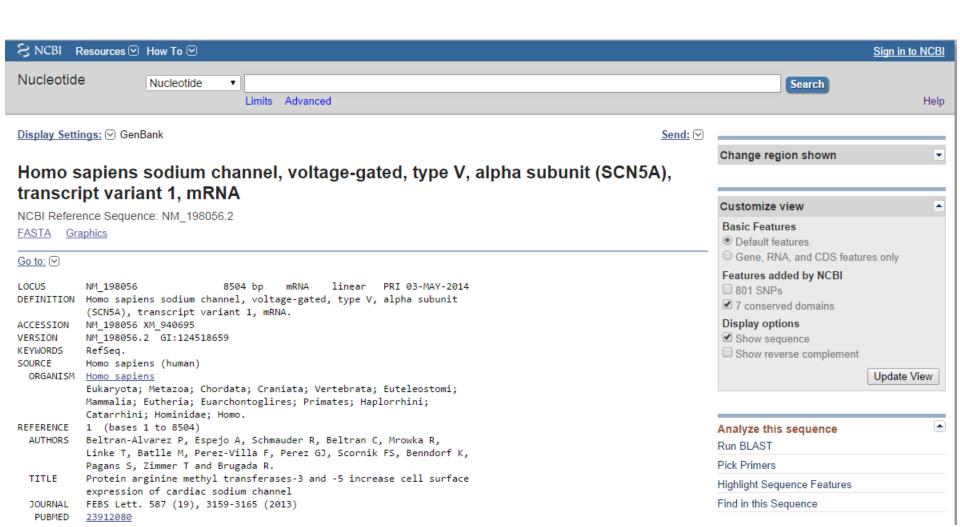
|         |          | GenBa           | nk          | WGS             |             |  |  |
|---------|----------|-----------------|-------------|-----------------|-------------|--|--|
| Release | Date     | Bases           | Sequences   | Bases           | Sequences   |  |  |
| 3       | Dec 1982 | 680338          | 606         |                 |             |  |  |
| 119     | Aug 2000 | 9,545,724,824   | 8,214,339   |                 |             |  |  |
| 129     | Apr 2002 | 19,072,679,701  | 16,769,983  | 692,266,338     | 172,768     |  |  |
| 203     | Aug 2014 | 165,722,980,375 | 174,108,750 | 774,052,098,731 | 189,080,419 |  |  |

# GenBank



# GenBank

| Nucleotide          | Nucleotide | •      |          |         |
|---------------------|------------|--------|----------|---------|
|                     |            | Limits | Advanced |         |
| Display Settings: ♥ | Graphics   |        |          | Send: ♥ |


# Homo sapiens sodium channel, voltage-gated, type V, alpha subunit (SCN5A), transcript variant 1, mRNA

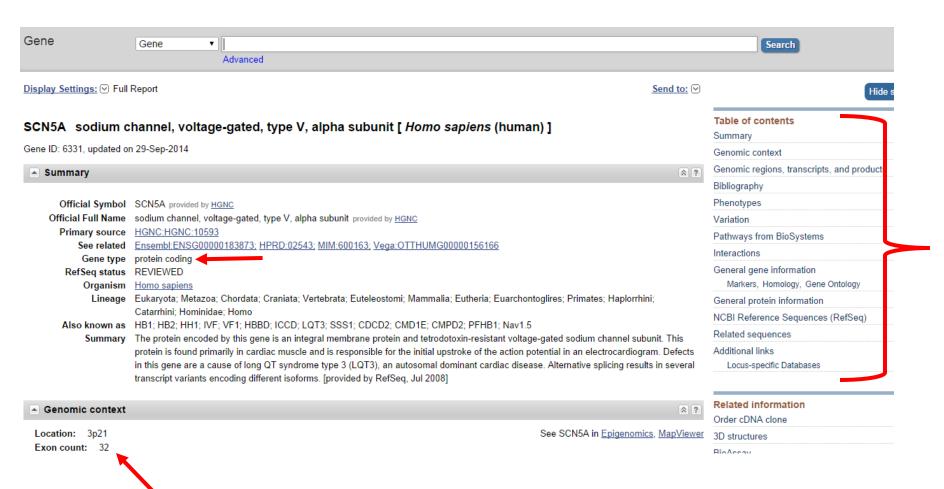
NCBI Reference Sequence: NM\_198056.2

GenBank FASTA

Link To This Page | Feedback 2,500 3,500 4,500 6,500 18 K 8,50 ▼ | ⟨□ | □ | → #E NM\_198056.2: 1..8.5K (8.5Kbp) ▼ | Find: exon exon exon exon exon exon exon exon 📰 exon 📰 Genes SCN5A

# *SCN5A* − 32 exons




### Amino Acid Sequence

#### Nucleotide Sequence

ORIGIN

/translation="MANFLLPRGTSSFRRFTRESLAAIEKRMAEKQA GLPEEEAPRPQLDLQASKKLPDLYGNPPQELIGEPLEDLDPFYSTQK FRFSATNALYVLSPFHPIRRAAVKILVHSLFNMLIMCTILTNCVFMA EYTFTAIYTFESLVKILARGFCLHAFTFLRDPWNWLDFSVIIMAYTT RTFRVLRALKTISVISGLKTIVGALIQSVKKLADVMVLTVFCLSVFA RHKCVRNFTALNGTNGSVEADGLVWESLDLYLSDPENYLLKNGTSDV CPEGYRCLKAGENPDHGYTSFDSFAWAFLALFRLMTQDCWERLYQQT FMLVIFLGSFYLVNLILAVVAMAYEEQNQATIAETEEKEKRFQEAME RGVDTVSRSSLEMSPLAPVNSHERRSKRRKRMSSGTEECGEDRLPKS LSLTRGLSRTSMKPRSSRGSIFTFRRRDLGSEADFADDENSTAGESE LRRTSAQGQPSPGTSAPGHALHGKKNSTVDCNGVVSLLGAGDPEATS EHPPDTTTPSEEPGGPQMLTSQAPCVDGFEEPGARQRALSAVSVLTS CPPCWNRLAQRYLIWECCPLWMSIKQGVKLVVMDPFTDLTITMCIVL MTSEFEEMLQVGNLVFTGIFTAEMTFKIIALDPYYYFQQGWNIFDSI SRMSNLSVLRSFRLLRVFKLAKSWPTLNTLIKIIGNSVGALGNLTLV GMQLFGKNYSELRDSDSGLLPRWHMMDFFHAFLIIFRILCGEWIETM CLLVFLLVMVIGNLVVLNLFLALLLSSFSADNLTAPDEDREMNNLQL VKRTTWDFCCGLLRQRPQKPAALAAQGQLPSCIATPYSPPPPETEKV GEQPGQGTPGDPEPVCVPIAVAESDTDDQEEDEENSLGTEEESSKQQ PPDSRTWSQVSATASSEAEASASQADWRQQWKAEPQAPGCGETPEDS TAELLEQIPDLGQDVKDPEDCFTEGCVRRCPCCAVDTTQAPGKVWWR SWFETFIIFMILLSSGALAFEDIYLEERKTIKVLLEYADKMFTYVFV FKKYFTNAWCWLDFLIVDVSLVSLVANTLGFAEMGPIKSLRTLRALR RVVVNALVGAIPSIMNVLLVCLIFWLIFSIMGVNLFAGKFGRCINQT NNKSQCESLNLTGELYWTKVKVNFDNVGAGYLALLQVATFKGWMDIM QPQWEYNLYMYIYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKLGGQ YNAMKKLGSKKPQKPIPRPLNKYQGFIFDIVTKQAFDVTIMFLICLN SPEKINILAKINLLFVAIFTGECIVKLAALRHYYFTNSWNIFDFVVV IIOKYFFSPTLFRVIRLARIGRILRLIRGAKGIRTLLFALMMSLPAL FIYSIFGMANFAYVKWEAGIDDMFNFQTFANSMLCLFQITTSAGWDG YCDPTLPNSNGSRGDCGSPAVGILFFTTYIIISFLIVVNMYIAIILE PLSEDDFDMFYEIWEKFDPEATQFIEYSVLSDFADALSEPLRIAKPN VSGDRIHCMDILFAFTKRVLGESGEMDALKIQMEEKFMAANPSKISY EEVSAMVIQRAFRRHLLQRSLKHASFLFRQQAGSGLSEEDAPEREGL PLGPPSSSSISSTSFPPSYDSVTRATSDNLQVRGSDYSHSEDLADFP

```
1 agacggcggc ggcgcccgta ggatgcaggg atcgctcccc cggggccgct gagcctgcgc
  61 ccagtgcccc gagccccgcg ccgagccgag tccgcgccaa gcagcagccg cccaccccgg
121 ggcccggccg ggggaccagc agcttcccca caggcaacgt gaggagagcc tgtgcccaga
181 agcaggatga gaagatggca aacttcctat tacctcgggg caccagcagc ttccgcaggt
 241 tcacacggga gtccctggca gccatcgaga agcgcatggc agagaagcaa gcccgcggct
 301 caaccacctt gcaggagagc cgagagggc tgcccgagga ggaggctccc cggccccagc
 361 tggacctgca ggcctccaaa aagctgccag atctctatgg caatccaccc caagagctca
421 tcggagagcc cctggaggac ctggacccct tctatagcac ccaaaagact ttcatcgtac
481 tgaataaagg caagaccatc ttccggttca gtgccaccaa cgccttgtat gtcctcagtc
 541 ccttccaccc catccggaga gcggctgtga agattctggt tcactcgctc ttcaacatgc
601 tcatcatgtg caccatcctc accaactgcg tgttcatggc ccagcacgac cctccaccct
661 ggaccaagta tgtcgagtac accttcaccg ccatttacac ctttgagtct ctggtcaaga
721 ttctggctcg aggcttctgc ctgcacgcgt tcactttcct tcgggaccca tggaactggc
781 tggactttag tgtgattatc atggcataca caactgaatt tgtggacctg ggcaatgtct
841 cagccttacg caccttccga gtcctccggg ccctgaaaac tatatcagtc atttcagggc
901 tgaagaccat cgtgggggcc ctgatccagt ctgtgaagaa gctggctgat gtgatggtcc
961 tcacagtctt ctgcctcagc gtctttgccc tcatcggcct gcagctcttc atgggcaacc
1021 taaggcacaa gtgcgtgcgc aacttcacag cgctcaacgg caccaacggc tccgtggagg
1081 ccgacggctt ggtctgggaa tccctggacc tttacctcag tgatccagaa aattacctgc
1141 tcaagaacgg cacctctgat gtgttactgt gtgggaacag ctctgacgct gggacatgtc
1201 cggagggcta ccggtgccta aaggcaggcg agaaccccga ccacggctac accagcttcg
1261 attcctttgc ctgggccttt cttgcactct tccgcctgat gacgcaggac tgctgggagc
1321 gcctctatca gcagaccctc aggtccgcag ggaagatcta catgatcttc ttcatgcttg
1381 tcatcttcct ggggtccttc tacctggtga acctgatcct ggccgtggtc gcaatggcct
1441 atgaggagca aaaccaagcc accatcgctg agaccgagga gaaggaaaag cgcttccagg
1501 aggccatgga aatgctcaag aaagaacacg aggccctcac catcaggggt gtggataccg
1561 tgtcccgtag ctccttggag atgtcccctt tggccccagt aaacagccat gagagaagaa
1621 gcaagaggag aaaacggatg tcttcaggaa ctgaggagtg tggggaggac aggctcccca
1681 agtctgactc agaagatggt cccagagcaa tgaatcatct cagcctcacc cgtggcctca
1741 gcaggacttc tatgaagcca cgttccagcc gcgggagcat tttcaccttt cgcaggcgag
1801 acctgggttc tgaagcagat tttgcagatg atgaaaacag cacagcgggg gagagcgaga
1861 gccaccacac atcactgctg gtgccctggc ccctgcgccg gaccagtgcc cagggacagc
1921 ccagtcccgg aacctcggct cctggccacg ccctccatgg caaaaagaac agcactgtgg
1981 actgcaatgg ggtggtctca ttactggggg caggcgaccc agaggccaca tccccaggaa
2041 gccacctcct ccgccctgtg atgctagagc acccgccaga cacgaccacg ccatcggagg
2101 agccaggcgg gccccagatg ctgacctccc aggctccgtg tgtagatggc ttcgaggagc
2161 caggagcacg gcagcggcc ctcagcgcag tcagcgtcct caccagcgca ctggaagagt
2221 tagaggagtc tcgccacaag tgtccaccat gctggaaccg tctcgcccag cgctacctga
```





# **dbSNP**

Contig Label

gene model (contig mRNA transcript):

Contig

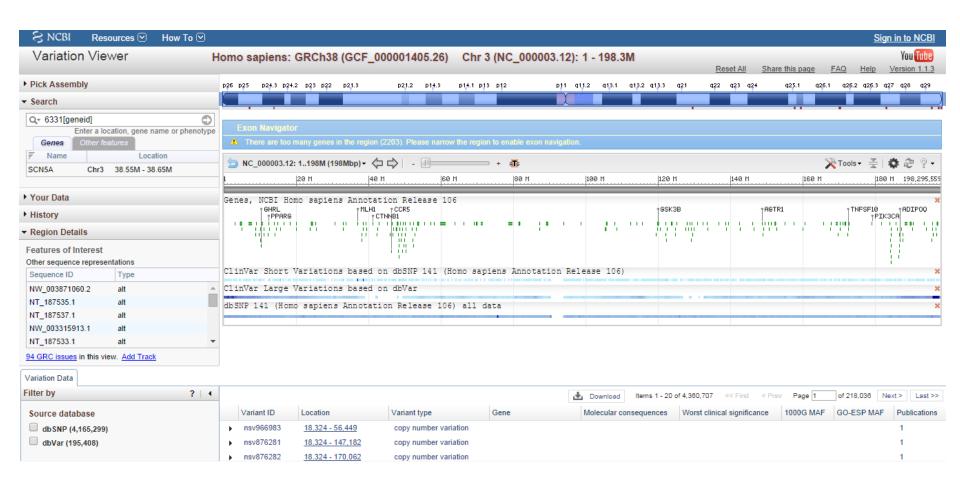


| > MCRI                                                | Short                                               | t Genetic Va       | ariations               | 2 7                                         |                                             |                                               |                                    |                                 |                                |
|-------------------------------------------------------|-----------------------------------------------------|--------------------|-------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------|------------------------------------|---------------------------------|--------------------------------|
| PubMed Nucleotide                                     | Protein Genor                                       | me Structure       | PopSet Taxor            | nomy OMIM Boo                               | oks SNP                                     |                                               |                                    |                                 |                                |
|                                                       | Search for SN                                       | NP on NCBI Ref     | ference Assem           | bly                                         |                                             |                                               |                                    |                                 |                                |
| Search Entrez SNP                                     | ,                                                   | ▼ for              |                         | Go                                          |                                             |                                               |                                    |                                 |                                |
|                                                       |                                                     |                    |                         |                                             |                                             |                                               |                                    |                                 |                                |
| Have a question                                       | SNP linked to G                                     | ene (genelD:63     | 31) Via Contig <i>I</i> | Annotation                                  |                                             |                                               |                                    |                                 |                                |
| about dbSNP? Try<br>searching the SNP<br>FAQ Archive! | The SNP GeneVi<br>GRCh37p13 or G<br>comments and su | RCh38, and will    | replace SNP Ge          | ation on GRCh38. /<br>eneView later this ye | A new <u>Variation</u><br>ear. Please visit | <u>Viewer</u> is avai<br>the <u>Help Page</u> | lable to view<br>or <u>YouTube</u> | the gene SCN<br>for available f | 5A variations<br>eatures and s |
| Go                                                    |                                                     | all gene models to | 1 L                     |                                             |                                             |                                               |                                    |                                 |                                |
| GENERAL                                               | Gene Model (m                                       | RNA alignment      | ) information fr        | om genome seque                             | ence                                        |                                               | 1                                  |                                 |                                |
| RSS Feed                                              | Total                                               | gene model (co     | ntig mRNA tran          | script):                                    | 9                                           |                                               |                                    |                                 |                                |
| Contact Us                                            | mrna                                                | transcript         | protein                 | mrna orientation                            | Contig                                      | Contig Label                                  | List                               | SNP                             |                                |
| Site Map                                              | NM_198056.2                                         | minus strand N     | IP_932173.1             | reverse                                     | NT_022517.19                                | GRCh38                                        | <- currently                       | shown                           |                                |
| dbSNP Homepage                                        | NM_001099404.1                                      | 1 minus strand N   | IP_001092874.1          | reverse                                     | NT_022517.19                                | GRCh38                                        | View snp on                        | GeneModel                       |                                |
| Announcements                                         | NM_000335.4                                         | minus strand N     | IP_000326.2             | reverse                                     | NT_022517.19                                | GRCh38                                        | View snp on                        | GeneModel                       |                                |
| dbSNP Summary                                         | XM_006713284.1                                      | 1 minus strand X   | (P_006713347.1          | reverse                                     | NT_022517.19                                | GRCh38                                        | View snp on                        | GeneModel                       |                                |
| FTP Download                                          | XM_006713283.1                                      | 1 minus strand X   | (P_006713346.1          | reverse                                     | NT_022517.19                                | GRCh38                                        | View snp on                        | GeneModel                       |                                |
| HUMAN VARIATION                                       | XM_006713282.1                                      | 1 minus strand X   | (P_006713345.1          | reverse                                     | NT_022517.19                                | GRCh38                                        | View snp on                        | GeneModel                       |                                |
| SNP SUBMISSION                                        | NM_001160161.1                                      | 1 minus strand N   | IP_001153633.1          | reverse                                     | NT_022517.19                                | GRCh38                                        | View snp on                        | GeneModel                       |                                |
| DOCUMENTATION                                         | NM_001160160.1                                      | 1 minus strand N   | IP_001153632.1          | reverse                                     | NT_022517.19                                | GRCh38                                        | View snp on                        | GeneModel                       |                                |
| SEARCH<br>RELATED SITES                               | NM_001099405.                                       | 1 minus strand N   | IP_001092875.1          | reverse                                     | NT_022517.19                                | GRCh38                                        | View snp on                        | GeneModel                       |                                |
|                                                       | Clinical Source                                     | e 🔵 in gene reg    | gion 🌘 cSNP 🌘           | ) has frequency 🥚                           | double hit ref                              | resh                                          |                                    |                                 |                                |

mrna

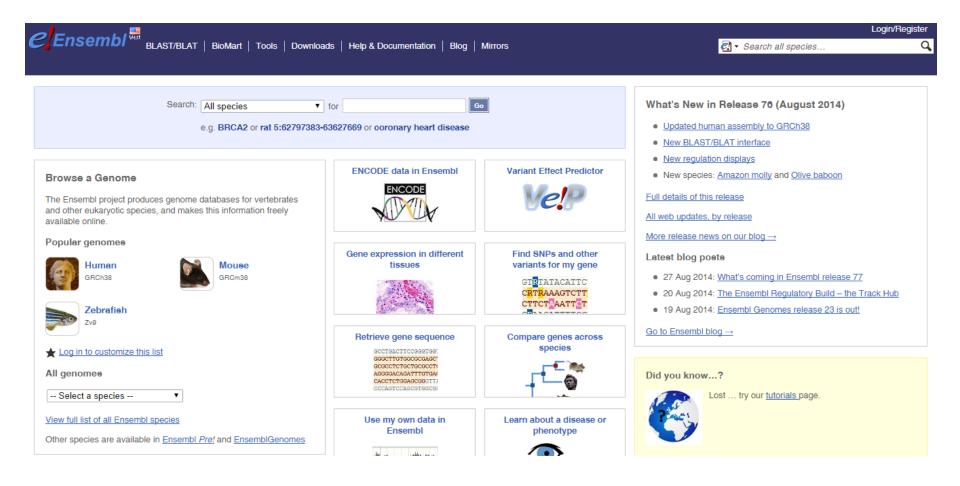
GRCh38 NT\_022517.19 NM\_198056.2 NP\_932173.1

refresh


mrna orientation transcript snp count

minus strand 238, coding

reverse


protein

| Region | Chr.<br>position | mRNA<br>pos | dbSNP rs#<br>cluster id | Hetero-<br>zygosity | Validation   | MAF    | Allele<br>origin | 3D | Linkout | Function            |   | Protein<br>residue |   | Ami<br>aci<br>po | d PubMed                                                                                     |
|--------|------------------|-------------|-------------------------|---------------------|--------------|--------|------------------|----|---------|---------------------|---|--------------------|---|------------------|----------------------------------------------------------------------------------------------|
|        | 38550365         | 6198        | <u>rs376697724</u>      | N.D.                |              |        |                  |    |         | missense            | Α | Asn [N]            | 1 | 2002             |                                                                                              |
|        |                  |             |                         |                     |              |        |                  |    |         | contig<br>reference | G | Asp [D]            | 1 | 2002             | E Legend: Validation - Google Chrome                                                         |
|        | 38550401         | 6162        | <u>rs371308670</u>      | N.D.                |              |        |                  |    |         | missense            | T | Trp [W]            | 1 | 1990             | www.ncbi.nlm.nih.gov/SNP/snp_legend.cgi?lege                                                 |
|        |                  |             |                         |                     |              |        |                  |    |         | contig<br>reference | С | Arg [R]            | 1 | <u>1990</u>      | Validation status description                                                                |
|        | 38550430         | 6133        | <u>rs76759236</u>       | 0.500               |              |        |                  |    |         | missense            | G | Ser [S]            | 2 | 1980             | _                                                                                            |
|        |                  |             |                         |                     |              |        |                  |    |         | contig<br>reference | С | Thr [T]            | 2 | <u>1980</u>      | Validated by multiple, independent submissions to the refSNP cluster                         |
|        | 38550522         | 6041        | <u>rs367778922</u>      | N.D.                |              |        |                  |    |         | synonymous          | T | Tyr [Y]            | 3 | 1949             | Validated by frequency or genotype data: minor alleles observed in at least two chromosomes. |
|        |                  |             |                         |                     |              |        |                  |    |         | contig<br>reference | С | Tyr [Y]            | 3 | <u>1949</u>      |                                                                                              |
|        | 38550523         | 6040        | rs375614054             | N.D.                |              |        |                  |    |         | missense            | G | Cys [C]            | 2 | 1949             | Validated by submitter confirmation                                                          |
|        |                  |             |                         |                     |              |        |                  |    |         | contig<br>reference | Α | Tyr [Y]            | 2 | <u>1949</u>      | All alleles have been observed in at least two chromosomes apiece                            |
|        | <u>38550528</u>  | <u>6035</u> | <u>rs13324293</u>       | 0.102               | %¥∰ <b>™</b> | 0.0542 |                  |    |         | synonymous          | Т | lle [l]            | 3 | 1947             |                                                                                              |
|        |                  |             |                         |                     |              |        |                  |    |         | contig<br>reference | С | lle [l]            | 3 | <u>1947</u>      | Genotyped by HapMap project  SNP has been sequenced in 1000Genome                            |
|        | 38550530         | 6033        | rs62241186              | 0.500               |              |        |                  |    |         | missense            | G | Val [V]            | 1 | 1947             | project.                                                                                     |
|        |                  |             |                         |                     |              |        |                  |    |         | contig<br>reference | А | lle [l]            | 1 | <u>1947</u>      | Suspect SNPs: snp suspected from paralogous                                                  |
|        | <u>38550564</u>  | <u>5999</u> | <u>rs372582841</u>      | N.D.                |              |        |                  |    |         | synonymous          | T | Leu [L]            | 3 | 1935             | region ( <u>PMID</u> : <u>21030649</u> ). Added to dbSNP on 01/21/2011.                      |
|        |                  |             |                         |                     |              |        |                  |    |         | contig<br>reference | С | Leu [L]            | 3 | <u>1935</u>      | 01/21/2011.                                                                                  |
|        | 38550570         | <u>5993</u> | <u>rs375254452</u>      | N.D.                |              |        |                  |    |         | synonymous          | T | Ser [S]            | 3 | 1933             |                                                                                              |
|        |                  |             |                         |                     |              |        |                  |    |         | contig<br>reference |   | Ser [S]            |   | <u>1933</u>      |                                                                                              |
|        | <u>38550576</u>  | <u>5987</u> | <u>rs200594132</u>      | 0.001               | <b>₩</b>     | 0.0005 |                  |    |         | synonymous<br>      | Α | Ala [A]            | 3 | 1931             |                                                                                              |



# Ensembl

- joint scientific project between the European Bioinformatics Institute and the Wellcome Trust Sanger Institute
- launched in 1999
- centralized resource for geneticists, molecular biologists and other researchers studying the genomes of our own species and other vertebrates and model organisms





BLAST/BLAT | BioMart | Tools | Downloads | Help & Documentation | Blog | Mirrors

Search all species..

Human (GRCh38)

Location: 3:38,548,057-38,649,673

Gene: SCN5A

#### Gene-based displays

Summary Splice variants (15) Transcript comparison

Supporting evidence

Sequence

Secondary Structure External references

Regulation

Expression

□ Comparative Genomics

Genomic alignments

⊟ Gene tree (image)

Gene tree (text)

Gene tree (alignment) Gene gain/loss tree

Orthologues (50)

 Paralogues (16) Protein families (12)

Phenotype

Genetic Variation

 Variation table Variation image

Structural variation

External data

Personal annotation

□ ID History

☐ Gene history

Configure this page



#### Gene: SCN5A ENSG00000183873

Description sodium channel, voltage-gated, type V, alpha subunit [Source:HGNC Symbol;Acc:HGNC:10593] Synonyms CDCD2, CMD1E, CMPD2, HB1, HB2, HBBD, HH1, ICCD, IVF, LQT3, Nav1.5, PFHB1, SSS1

Location Chromosome 3: 38,548,057-38,649,673 reverse strand. chromosome:GRCh38:CM000665.2:38548057:38649673:1 **INSDC** coordinates

Transcripts This gene has 15 transcripts (splice variants) Show transcript table

#### Summary 0

Name SCN5A (HGNC Symbol)

CCDS This gene is a member of the Human CCDS set: CCDS46796, CCDS46797, CCDS46798, CCDS46799, CCDS54569, CCDS54570

This gene has proteins that correspond to the following Uniprot identifiers: Q14524 UniprotKB Overlapping RefSeg Gene ID 6331 matches and has similar biotype of protein coding RefSeq

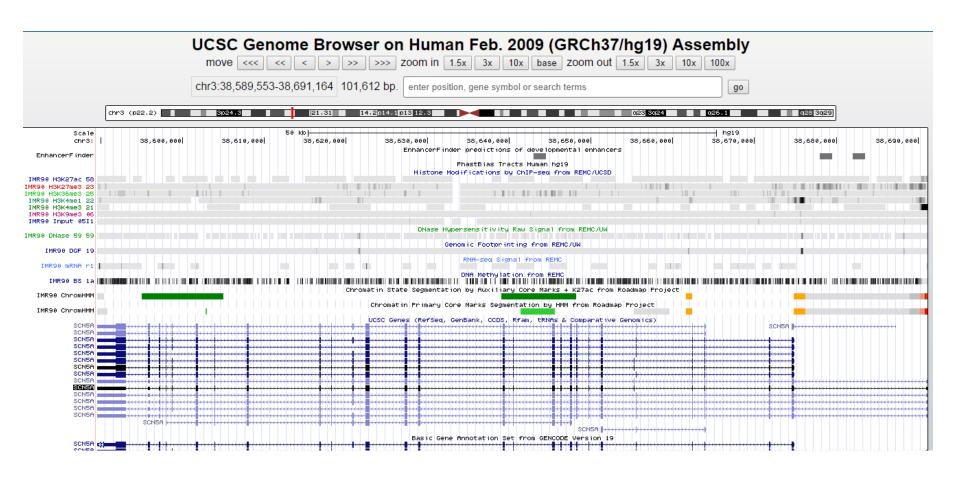
LRG LRG 289 provides a stable genomic reference framework for describing sequence variations for this gene

Ensembl version ENSG00000183873.12

**GRCh37 assembly** This gene maps to 38,589,548-38,691,164 in GRCh37 coordinates.

View this locus in the GRCh37 archive: ENSG00000183873

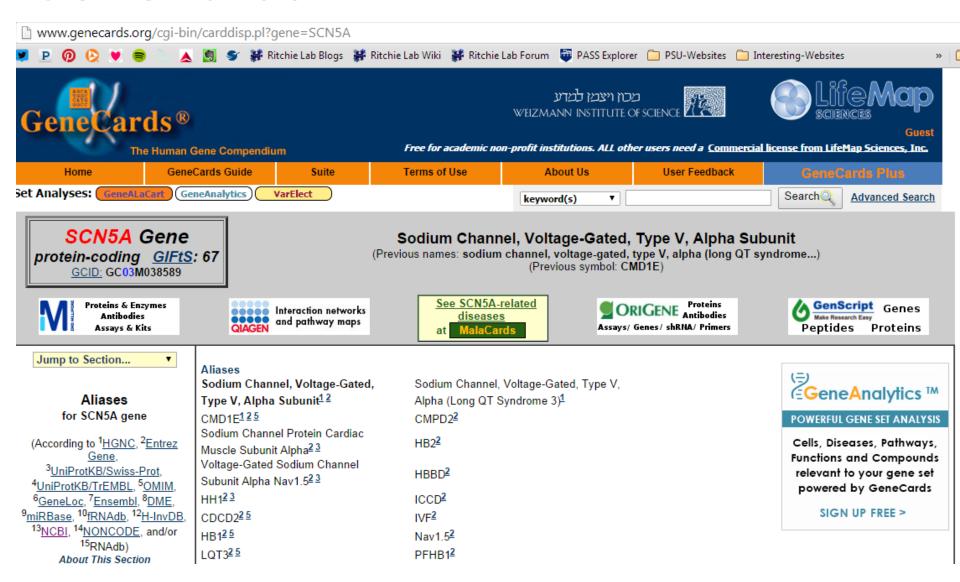
Gene type Known protein coding


**Prediction Method** Annotation for this gene includes both automatic annotation from Ensembl and Havana manual curation, see article.

Alternative genes This gene corresponds to the following database identifiers:

Havana gene: OTTHUMG00000156166

# **UCSC Genome Browser**


- on-line genome browser hosted by the University of California, Santa Cruz (UCSC)
- interactive website offering access to genome sequence data from a variety of vertebrate and invertebrate species and major model organisms
- integrated with a large collection of aligned annotations
- graphical viewer optimized to support fast interactive performance and is an open-source, web-based tool suite built on top of a MySQL database for rapid visualization, examination, and querying of the data at many levels



# GeneCards

- searchable, integrated database of human genes
- provides comprehensive, updated, and user-friendly information
- all known and predicted human genes
- extracts and integrates gene-related data:
  - Genomic
  - Transcriptomic
  - Proteomic
  - Genetic
  - Clinical
  - functional information
- Automatically mined from >100 carefully selected web sources
- Allowing one-stop access to a very broad information base

# GeneCards



If the focus is primarily SNPs....

## HapMap Project: Create a genome-wide SNP map



### International HapMap Project

Home I About the Project I Data I Publications

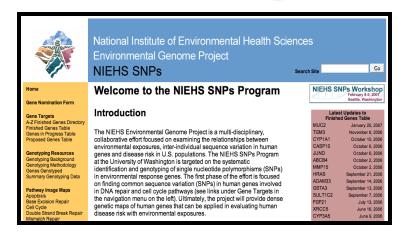
中文 | English | Français | 日本語 | Yoruba

### Genotype SNPs in four populations:

- CEPH (CEU) (Europe n = 90, trios)
- Yoruban (YRI) (Africa n = 90, trios)
- Japanese (JPT) (Asian n = 45)
- Chinese (HCB) (Asian n = 45)

To produce a genome-wide map of common variation

Common Variant/Common Disease



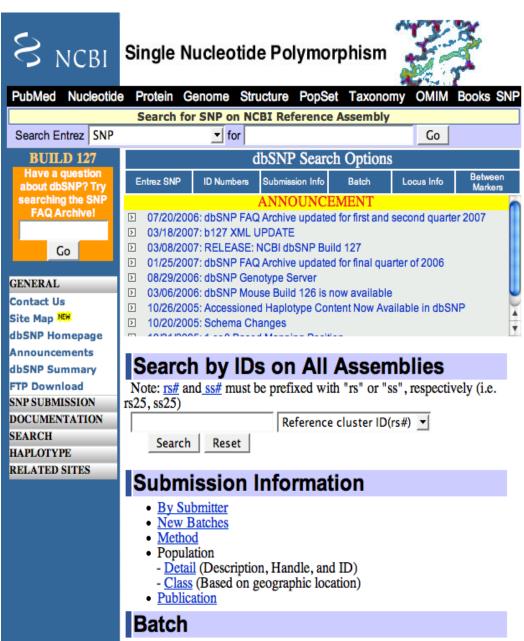

### Low density - genome-wide Phase I - 1M SNPs

Phase II - 4M SNPs

Density ~ 1 SNP/kb

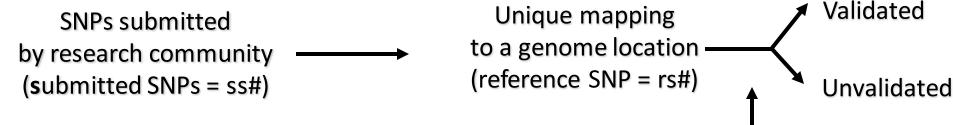
### High density - candidate gene

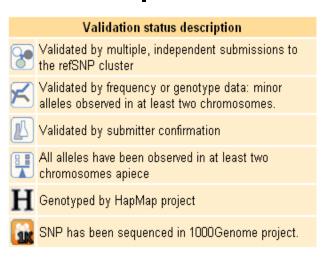



643 genes - 15 Mbp 92,300 SNPs - 1 SNP/166 bp

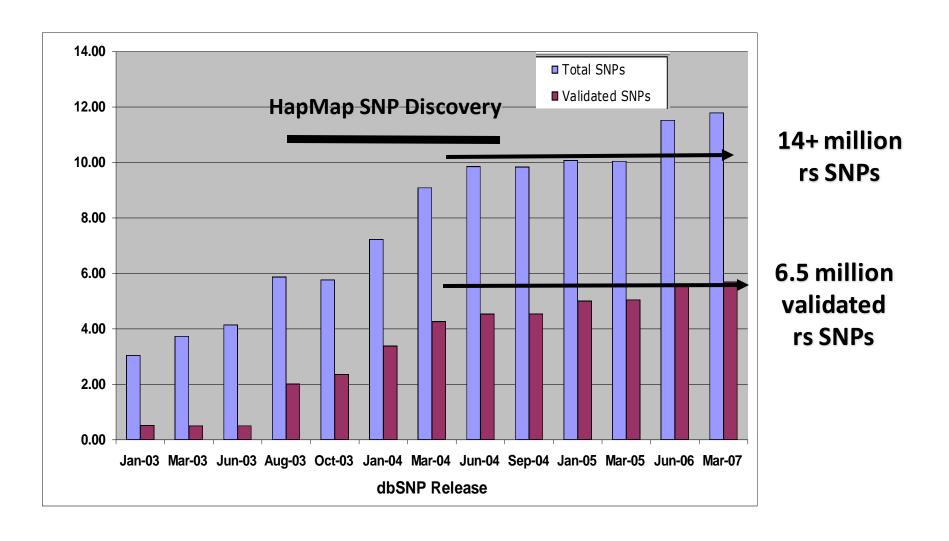


322 genes - 7 Mbp 37,450 SNPs - 1 SNP/186 bp


# **SNP Discovery: dbSNP database**


dbSNP
-NCBI SNP database




### SNP data submitted to dbSNP: Clustering

### dbSNP processing of SNPs





### **HapMap Discovery Increased SNP Density and Validated SNPs**



# rs #'s are THE nomenclature for SNPs

Table 1 Association between SNPs in the chromosome 20 locus and AGA in the German sample

|                 |             | Cases <sup>d</sup> |           | MAFa               |                       | Geno               | otypes <sup>b</sup>   |                         |                          |
|-----------------|-------------|--------------------|-----------|--------------------|-----------------------|--------------------|-----------------------|-------------------------|--------------------------|
| SNP (position)c | Sample      |                    | Controlse | Cases <sup>d</sup> | Controls <sup>e</sup> | Cases <sup>d</sup> | Controls <sup>e</sup> | P                       | OR (95% CI) <sup>f</sup> |
| rs6137444       | GWAS        | 296                | 347       | 0.264 (C)          | 0.383 (C)             | 14/128/154         | 49/168/130            | 3.11 × 10 <sup>-6</sup> | 1.74 (1.37–2.21)         |
| (21,733,639 bp) | Replication | 319                | 234       | 0.277 (C)          | 0.404 (C)             | 21/135/163         | 45/99/90              | $1.57 \times 10^{-5}$   | 1.76 (1.37-2.27)         |
|                 | Combinedg   | 605                | 579       | 0.269 (C)          | 0.391 (C)             | 35/255/315         | 93/267/219            | $2.20 \times 10^{-10}$  |                          |
| rs2180439       | GWAS        | 296                | 347       | 0.292 (C)          | 0.429 (C)             | 21/131/144         | 66/166/115            | $3.85 \times 10^{-7}$   | 1.82 (1.45-2.30)         |
| (21,801,100 bp) | Replication | 319                | 234       | 0.303 (C)          | 0.485 (C)             | 23/147/149         | 62/103/69             | $1.37 \times 10^{-9}$   | 2.17 (1.70-2.78)         |
|                 | Combinedg   | 605                | 579       | 0.293 (C)          | 0.452 (C)             | 43/268/294         | 127/269/183           | $2.67 \times 10^{-15}$  |                          |
| rs1998076       | GWAS        | 296                | 347       | 0.282 (A)          | 0.427 (A)             | 20/120/144         | 65/163/115            | $1.30 \times 10^{-7}$   | 1.90 (1.50-2.41)         |
| (21,828,045 bp) | Replication | 319                | 234       | 0.301 (A)          | 0.479 (A)             | 23/146/150         | 61/102/71             | $3.69 \times 10^{-9}$   | 2.13 (1.66-2.73)         |
|                 | Combinedg   | 605                | 579       | 0.292 (A)          | 0.448 (A)             | 43/267/295         | 126/267/186           | $7.73 \times 10^{-15}$  |                          |
| rs201571        | GWAS        | 296                | 347       | 0.289 (C)          | 0.411 (C)             | 17/137/142         | 61/163/123            | $4.31 \times 10^{-6}$   | 1.72 (1.36-2.17)         |
| (21,961,514 bp) | Replication | 319                | 234       | 0.314 (C)          | 0.483 (C)             | 30/140/149         | 58/110/66             | $2.21 \times 10^{-8}$   | 2.05 (1.60-2.62)         |
|                 | Combinedg   | 605                | 579       | 0.298 (C)          | 0.44 (C)              | 46/269/290         | 119/272/188           | $1.21 \times 10^{-12}$  |                          |
| rs6113491       | GWAS        | 296                | 347       | 0.359 (C)          | 0.483 (C)             | 29/154/112         | 88/159/100            | $8.63 \times 10^{-6}$   | 1.66 (1.33-2.08)         |
| (22,005,415 bp) | Replication | 319                | 234       | 0.364 (C)          | 0.447 (A)             | 38/156/125         | 77/105/52             | $8.13 \times 10^{-10}$  | 2.17 (1.70-2.77)         |
|                 | Combinedg   | 605                | 579       | 0.359 (C)          | 0.488 (A)             | 66/302/237         | 165/263/151           | $1.13\times10^{-13}$    |                          |

# Increasing SNP Density: HapMap ENCODE Project

ENCODE = ENCyclopedia Of DNA Elements

Catalog all functional elements in 1% of the genome (30 Mb)

10 Regions x 500 kb/region (Pilot Project)

David Altschuler (Broad), Richard Gibbs (Baylor)

16 CEU, 16 YRI, 8 HCB, 8 JPT

Comprehensive PCR based resequencing across these regions

| Project<br>Information |
|------------------------|
| Resequencing           |
| Project                |
| Genotyping             |

Genotyping Project Perlegen Genotyping

Component

ENCODE Links

ENCODE genotype data dumps

About the ENCODE Project

|                |                    |                            |        | ENCODE R  | Regions G | enotyp | e Infor     |
|----------------|--------------------|----------------------------|--------|-----------|-----------|--------|-------------|
| B i            | 01                 |                            | Availa | able SNPs |           | 16     |             |
| Region<br>name | Chromosome<br>band | Genomic interval<br>(NCBI) | dbSNP  | New SNPs  | TO C      | no rs  | 15,         |
| ENr112         | 2p16.3             | Chr2:5163323952133238      | 1,624  | 1,720     | 1,064     | 93     | 16          |
| ENr131         | 2q37.1             | Chr2:234778639235278638    | 1,787  | 1,233     | 1,179     | 71     |             |
| ENr113         | 4q26               | Chr4:118705475119205474    | 1,516  | 1,819     | 1,017     | 1,61   | <b>50</b> ° |
| ENm010         | 7p15.2             | Chr7:2669979327199792      | 1,274  | 1,857     | 757       | 45     | 30          |
| ENm013         | 7q21.13            | Chr7:8939571889895717      | 1,545  | 1,713     | 927       | 1,38   |             |
| ENm014         | 7q31.33            | Chr7:126135436126632577    | 1,354  | 1,562     | 963       | 1,42   |             |
| ENr321         | 8q24.11            | Chr8:118769628119269627    | 1,468  | 1,682     | 936       | 90     |             |
| ENr232         | 9q34.11            | Chr9:127061347127561346    | 1,494  | 1,646     | 694       | 70     | 5 N         |
| ENr123         | 12q12              | Chr12:3862647739126476     | 1,904  | 1,551     | 859       |        | - 4         |
| ENr213         | 18q12.1            | Chr18:2371722124217220     | 1,391  | 1,465     | 809       | 82     | 1/1         |
|                |                    | Total                      | 15,357 | 16,248    | 9,205     | 8,97   | -, -        |

15,357 dbSNP 16,248 New SNPs 50% of SNPs in dbSNP

o rs#

922 704

,597

456

,391

,419

903

689

819

3,900

5 Mb/31,500 SNPs = 1/160 bp

#### Population descriptors:

CEU: CEPH (Utah residents with ancestry from northern and western Europe)

HCB: Han Chinese in Beijing, China JPT: Japanese in Tokyo, Japan YRI: Yoruba in Ibadan, Nigeria



### National Institute of Environmental Health Sciences Environmental Genome Project

### **NIEHS SNPs**

Search Site

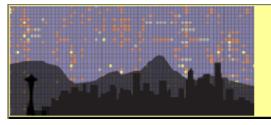
### Goal:

Comprehensively identify all common sequence variation in candidate genes

### **Initial biological focus:**

Candidate environmental response genes involved in DNA repair, cell cycle, apoptosis, metabolism, cell signaling, and oxidative stress.

### Approach:


Direct resequencing of genes

### Samples:

PDR-90 ethnically diverse individuals representative of U.S. population (397 genes) EGP95-95 samples from four ethnic groups (227 genes)

(24 HapMap Asians, 22 HapMap Europeans, 12 HapMap Yorubans, 15 African Americans, 22 Hispanics

# Website: egp.gs.washingon.edu



# SeattleSNPs

Variation Discovery Resource

### Goal:

Comprehensively identify all common sequence variation in candidate genes

### **Initial biological focus:**

Candidate environmental response genes involved in lipid metabolism, inflammation, and blood pressure regulation.

### Approach:

Direct resequencing of genes

### Samples:

P1: 23 CEPHs and 24 African-American (overlaps with Perlegen)

P2: 23 CEPHs and 24 Yorubans (overlaps with HapMap)

### Website:

pga.gs.washington.edu

# Summary of SeattleSNPs and NIEHS SNPs genotypes in dbSNP

Table 1. Summary of genotype data contained in dbSNP

| Data set   | Genotypes   | SNPs      | Populations | Individuals | Average SNP density | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|-------------|-----------|-------------|-------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HAPMAP     | 159,862,776 | 954,302   | 4 4 4       | 270         | 3149                | (International HapMap Consortium 2003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PERLEGEN   | 110,385,051 | 1,576,578 | 3           | 71          | 1938                | (Hinds et al. 2005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Affymetrix | 6,189,466   | 125,778   | 6           | 116         | 24,029              | (Kennedy et al. 2003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TSC        | 4,932,382   | 19,048    | 17          | 1963        | 312,754             | (International SNP Map Working Group 2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EGP        | 3,184,170   | 37,737    | 10.07%      | 90          | 72,443              | (Livingston et al. 2004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PGA/UW     | 573,194     | 15,981    | 2           | 47          | 153,861             | (Crawford et al. 2004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IIPGA      | 176,162     | 3801      | 3           | 47          | 430,361             | (Innate Immunity PGA, http://innateimmunity.net/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NIHPDR     | 159,549     | 1982      | 1ª          | 448         | 1,419,125           | (Collins et al. 1998)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WICVAR     | 33,240      | 1462      | 1           | 130         | 2,011,277           | CONTROL OF THE PROPERTY OF THE CONTROL OF THE PROPERTY OF THE |
| HG BONN    | 24,522      | 320       | 1           | 143         | 5,284,550           | (Freudenberg-Hua et al. 2003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

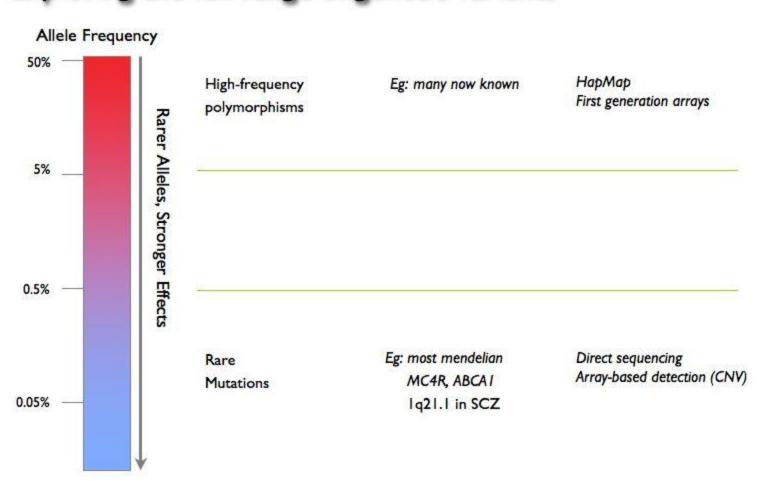
<sup>&</sup>lt;sup>a</sup>The NIHPDR data contains a single mixed population.

643 genes sequenced (NIEHS SNPs)

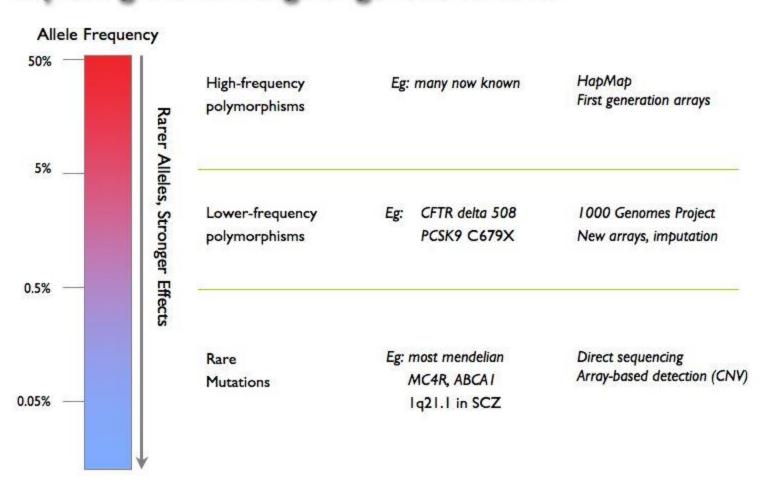
15 Mb scanned

- > 92,000 genotyped SNPs identified
- > 8 million genotypes deposited in dbSNP

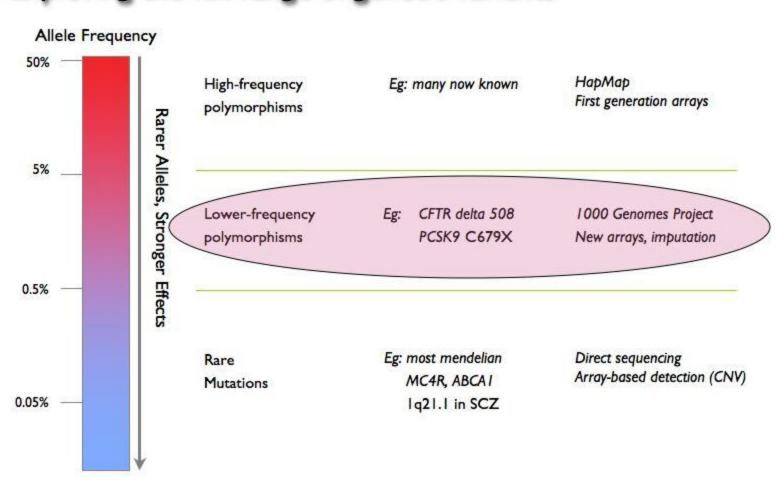
# Summary: The Current State of SNP Resources


- Approximately 10 million <u>common</u> SNPs exist in the human genome (1/300 bp).
- Random SNP discovery processes generate many SNPs (HapMap)
- Random approaches to SNP discovery have reached limits of discovery and validation (1/600 bp; 50% SNP validation)
- Most validated SNPs (6+ million) have been genotyped by the HapMap (3 pops)
- Resequencing approaches continue to catalog important variants (rare and common not captured by the HapMap)

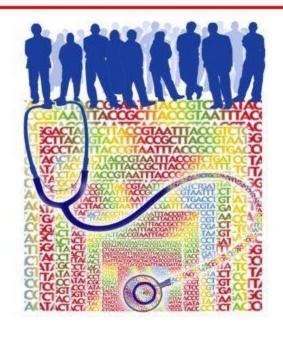



### 1000 genomes project: motivation

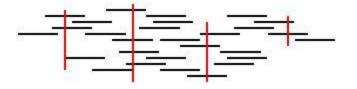
- GWAS shows that systematic association studies can be used to map disease genes
- The first generation of GWAS was well powered only for SNPs with > 5% MAF
- Next generation sequencing now makes it possible to create a complete catalogue of human polymorphism for SNPs and CNVs


### Exploring the full range of genetic variants




### Exploring the full range of genetic variants




### Exploring the full range of genetic variants



# 1000 Genomes Project



Random Coverage 0.2 to 0.4 X depth



Produce a catalog of variants across the genome in multiple populations with allele frequencies > 1%



#### Samples and ELSI Group

(Broad representative)

Leena Peltonen (co-chair) Sanger Institute Bartha Knoppers (co-chair) University of Montreal Aravinda Chakravarti (co-chair) Johns Hopkins Gonçalo Abecasis University of Michigan Richard Gibbs Baylor College of Medicine Lynn Jorde University of Utah Eric Juengst Case Western Reserve University Jane Kaye Oxford University Alastair Kent Genetic Interest Group Rick Kittles University of Chicago Jim Mullikin National Human Genome Research Institute Mike Province Washington University in St. Louis Charles Rotimi Howard University Yeyang Su Beijing Genomics Institute Chris Tyler-Smith Sanger Institute Production Group Ling Yang Beijing Genomics Institute

#### Elaine Mardis (co-chair) Washington University in St. Louis

Data Flow Group (being formed)

Paul Flicek (co-chair) European Bioinformal
Stephen Sherry (co-chair) National Center
Ewan Birney European Bioinformatics Instit Aarno Palotie Sanger Institute
Clive Brown Sanger Institute
David Dooling Wishington University to St.
Richard Gibble By D. Abry of March Medicine Sol Katzman V. In y of the mild the Wei Way B Bring Cord Cord Sol St.
Hoda Khouri N. Ioo Center of Biotechnology Information
Jun Wang Beijing Genomics Institute
Over the Wei Way B Bring Cord Cord Sol St.
Martin Shumway National Center for Biotechnology Information
Jun Wang Beijing Genomics Institute
George Weinstock Baylor College of Medicine

Stacey Gabriel (co-chair) Broad Institute

Richard Gibbs Baylor College of Medicine

Richard Durbin Sanger Institute

#### Steering Committee

Richard Durbin (co-chair) Sanger Institute David Altshuler (co-chair) Broad / MGH / Harvard Gonçalo Abecasis University of Michigan Arayinda Chakravarti Johns Hookins Andrew Clark Cornell University Francis Collins National Human Genome Research Institute Peter Donnelly Oxford University Paul Flicek European Bioinformatics Institute Stacey Gabriel Broad Institute Richard Gibbs Baylor College of Medicine Bartha Knoppers University of Montreal Eric Lander Broad Institute Elaine Mardis Washington University in St. Louis Gil McVean Oxford University Debbie Nickerson University of Washington Leena Peltonen Sanger Institute Stephen Sherry National Center for Biotechnology Information Rick Wilson Washington University in St. Louis Huanming (Henry) Yang Beijing Genomics Institute

#### Funders

Alan Schafer Wellcome Trust
Francis Collins National Human Genome Research Institute
Lisa Brooks National Human Genome Research Institute
Audrey Duncanson Wellcome Trust
Adam Felsenfeld National Human Genome Research Institute
Mark Guyer National Human Genome Research Institute
Buth Joseph College Trust
History Project College Trust
History Project College Trust
Adam Felsen College Trust
History Project College Trust
History Project College Trust
Adam Felsen College Trust
History Project College Trust
Adam Felsen College Trust
History Project College Trust
Adam Felsen College Trust
A

Jane Peterson National Human Genome Research Institute Anne Pierson National Human Genome Research Institute Zhiwu Ren National Planning and Development Committee Jian Wang Beijing Genomics Institute

#### Analysis Group

Gil McVean (co-chair) Oxford University Gonçalo Abecasis (co-chair) University of Michigan David Altshuler Broad / MGH / Harvant Paul de Bakker Broad / EWH / Harvard Brian Browning University of Auckland Sharon Browning University of Auckland Carlos Bustamante Cornell University David Carter Sanger Institute Aravinda Chakravarti Johns Hopkins Andrew Clark Cornell University Don Conrad Sanger Institute Mark Daly Groud / MGH / Harvard Manolis Dermitzakis Sanger Institute Peter Donnelly Oxford University Richard Durbin Sanger Institute Evan Eichler University of Washington Paul Flicek European Bioinformatics Institute Bryan Howle Oxford University Matt Hurles Sanger Institute David laffe Broad institute Lynn Jorde University of Utahi Hoda Khouri National Center for Biotechnology Information Eric Lander Broad Institute Charles Lee Brigham and Women's Hospital Guoging Li Beijing Genomics Institute Heng Li Sanger Institute Rulqiang Li Beijing Cenomics Institute Yingrui Li Beijing Genomics Institute Yun Li University of Michigan Jonathan Marchini Oxford University Gabor Marth Boston College Steve McCarroll Broad Institute Jim Mullikin National Human Cenome Research Institute Simon Myers Oxford University Rasmus Nielsen University of California, Berkeley Alikes Price Broad / Harvard Jonathan Pritchard University of Chicago Mike Province Washington Liniversity in St Louis Molly Przeworski University of Chicago Shaun Purcell Broad / MGH / Harvard Noah Rosenberg University of Michigan beti Broad / Harvard siversity of Michigan ner Broad Institute

at Cold Spring Harbor Laboratory

National Center for Biotechnology Information

Elniversity of Southern California

hens University of Chicago

Chris Tyler-Smith Sanger Institute

Jun Wang Reijing Genomics Institute

David Wheeler Baylor College of Medicine

Hongkun Zheng Beijing Genomics Institute

# Where to find SNPs and Linkage Disequlibrium Data

For your gene or region of interest, search

# **Genome Variation Server**

- HapMap www.hapmap.org
- NIEHS SNPs egp.gs.washington.edu
- SeattleSNPs PGA
   pga.gs.washington.edu

# Visualizing Pair-wise LD



### SeattleSNPs

Variation Discovery Resource

#### Search Site

>>

#### Home

#### Sequencing Resources

Sequenced Genes

Genes in Progress

Summary Statistics

Summary Data

Data Download

Gene Nomination

#### Genotypina Resources

Background

Methodology

Genes Genotyped

Genotyping Summary Data

Genotyping Support

#### Education

Online Training

2007 Workshop

Previous Workshops Traveling Workshops

PGA Symposium

#### Software

Genome Variation Server

HaploPowerCalc

Polyphred

VG2

VH1 LDSelect

LDSelect-Multipopulation

PCR Overlap

GeneHunter

#### Pathways.

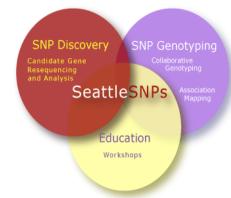
Clotting

PAR

#### Protocols

#### Personnel

What's New?


#### More SNP Data

Functional Mapping of Whole Genome Panels NIEHS SNPs

MDECODE

#### Welcome to SeattleSNPs

SeattleSNPs is funded as part of the National Heart Lung and Blood Institute's (NHLBI) Programs for Genomic Applications (PGA). The SeattleSNPs PGA is focused on identifying, genotyping, and modeling the associations between single nucleotide polymorphisms (SNPs) in candidate genes and pathways that underlie inflammatory responses in humans.



#### Investigator Opportunities

SeattleSNPs offers investigators several opportunities to make use of the the project's resources:

#### Nominate Genes for Resequencing

As part of its mission, SeattleSNPs is soliciting requests from individual investigators for candidate genes to be reseguenced for SNP discovery

#### Traveling Workshops

SeattleSNPs is now accepting applications from potential host sites for One- and Two-Day Traveling Workshops

#### Genotyping

SeattleSNPs is providing genotyping support for research related to heart, lung, blood, and sleep

**Genome Variation Server** Now Available

Online Tutorials: GVS and SeattleSNPs

SeattleSNPs Genotyping Service Apply Now

#### Latest Updates

IDeA Workshop Presentation added on August 7, 2008

VWF added to Finished Genes Page Jul 10, 2008

PGA Case Western Reserve University Presentations added on April 10, 2008

CYB5R4 added to Finished Genes Page Feb. 14, 2008

GPR1098 added to Finished Genes Page Dec 4,2007

PCYT1A added to Finished Genes Page Dec 4, 2007

FOXA3 added to Finished Genes Page Nov 14, 2007

PPARGCIA added to Finished Genes Page Nov 14, 2007

PCYT18 added to Finished Genes Page Oct 12, 2007

CSHL Clinical Cardiovascular Genomics Meeting

Tutorial added on October 10, 2007

CEBPA added to Finished Genes Page Jul 25, 2007

SLC20A1 added to Finished Genes Page Jul 25, 2007

HSD1182 added to Finished Genes Page Jun

GPR109A added to Finished Genes Page Jun 20, 2007

HMG81 added to Finished Genes Page Jun-19, 2007

MCOA1 added to Finished Genes Page Jun 8, 2007

ELN added to Finished Genes Page Jun 5, 2007

ALB added to Finished Genes Page Jun 4,

# Catalog of SNP effects



## **SNP-related Websites**

- dbSNP (<a href="http://www.ncbi.nlm.nih.gov/projects/SNP/">http://www.ncbi.nlm.nih.gov/projects/SNP/</a>)
- SeattleSNPs (pga.gs.washington.edu)
- NIEHS SNPs (egp.gs.washington.edu)
- Genome Variation Server (http://gvs.gs.washington.edu/GVS/
- HapMap (<u>www.hapmap.org</u>)
- SNPedia (<u>www.snpedia.com</u>)

# Assignment

- Search your favorite gene in the databases discussed today
- If you do not have a favorite gene, try one of mine:
  - SCN5A
  - RYR1
  - CETP
  - PCSK9
  - *FTO*
  - CDKN2B
  - PTPN22

# Questions???

