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Traditional Approach










Genome-wide Association Studies (GWAS)

* Technology has advanced rapidly creating many
molecular genetic tools for data generation

e Hundreds of thousands to millions of markers

e Hundreds to thousands of individuals
e Population based
* Family based

* Whole genome sequencing is the new frontier ¢
data generation
* Increasing data at all levels of biological variation




Published Genome-Wide Associations through 06/2011,
1,449 published GWA at p<5x10°8 for 237 traits

2011 2nd quarter
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Distribution of Effects
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Nonlinear Effects
The High-Hanging Fruit

Linear Effects

— The Low-Hanging Fruit

Moore and Williams. Am J Hum Genet. 2009; 85(3): 309-320



The case of the missing heritability |

When scientists opened up the human genome, they expected to find the genetic components of
common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on
six places where the missing loot could be stashed away.



Missing Heritability

 Under our nose
* Out of sight
* In the architecture

#l* Underground networks

' * Lost in diagnosis

‘m * The great beyond

The case of the missing heritability '

When scientists opened up the human genome, they expected to find the genetic components of
common traits and diseases, But they were nowhere to be seen. Brendan Maher shinesa light on
six places where the missing loot could be stashed away.

Maher, B. Nature 2008; 456:18-21



Biology is complex




Molecular biology is complex



Biology is complex
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Statistical Evaluation of Multiple-Locus Linkage Data in
Experimental Spacies and s Relevance to Human Studies:
Application to Nonobese Diabetic (NOD) Mouse and Human
Insulin-dependent Diabetes Mellltus (IDDM)

Meil Risch,® Sowsmitra Ghosh,™ and John A. Todd!
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Genetic variation and co-variation for fitness between
intraspopulation and inter-population backgrounds in the
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Genetic Interactions Between
Transcription Factors Cause Natural

Variation in Yeast
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Genetic architecture of complex traits: Large
phenotypic effects and pervasive epistasis
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Prevalent positive epistasis in Escherichia coli and
Saccharomyces cerevisiae metabolic networks

Xionglei He', Wenfeng
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Modular epistasis in yeast metabolism

ok, ool fhat smicractions ane whiguinun and that
the mureall deeribastion of the bl of imeracenes smony, rndam

P

eore cpistusia, deapte eoqucn pairin: mcrctis
-y e — R ——

mdeling™ " Frmvassnmental facso were sha

mctabuolic pencs im S, conrrier wsing the framrork of flus balanos
snshyin (FAAL & mathessstical method for cormputing whole-<cl
bl e ad grs v based i ey sie 4 opeen

e
e calkeudtod the

asemal i o bsrmass presdiuciunn | Ve o all the netwrsks i

Tabie | Wonecaied and scaled defimitions. of inteaction
brtemen mutso

Hor et satna

-,




AFRTHEITIS & REGLMA TN
Wl &2, R T, March XM pp TES-TID
ICH L1 TR

& 3, Arnericnn Crlicpe of Phoommaoey

Addiction Bi:jl@g}r

GEMETIC STUDY ot BOLLT DRALE 1850 A0 MR 008 Ly

Evidence of Epistasis Between TNFRSFI14 and TNFRSFoB
Polymorphisms in Patients With Rheumatoid Arthritis

Interaction of SLCSA4 and DRD2 polymorphisms is
associated with a history of delirium tremens
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Epistasis

M Epistasis—two or more genes interacting in a non-additive manner to confer
diseaserisk; gene-gene interactions

Genotype | p(D)
AABB 0.0 1.0 BB
AABb 0.0
AAbb 1.0 @
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Statistical Epistasis vs. Biological Epistasis
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Moore and Williams, BioEssays 27:637-646, 2005



Epistasis is important because...

Biologists believe bio-molecularinteractions are very common

Identifying “the gene” associated with common disease has not been as successful
like it has for Mendelian disease

Epistasis is detected when properly investigated

Mendelian single-gene disorders are now being considered complex traits with
gene-gene interactions (modifier genes)

B Most people agree epistasis exists but the degree of
independent main effect with epistasis versus interaction
effects in the absence of statistically detectable main effects
are a topic of controversy



Traditional Statistical Approaches
Genetic Epidemiology - Assaciation Analysis

M Typically one marker or SNP at a time to detect loci
exhibiting main effects

B Follow-up with an analysis to detect interactions
between the main effect loci

B Some studies attempt to detect pair-wise interactions
even without main effects

B Higher dimensions are usually not possible with
traditional methods



Traditional Statistical Approaches
Genetic Epidemiology - Assaciation Analysis

M Logistic Regression

Small sample size can result in biased estimates of
regression coefficients and can result in spurious
associations (Concato et al. 1993)

Need at least 10 cases or controls per independent
variable to have enough statistical power (Peduzzi et al.
1996)

Curse of dimensionalityis the problem (Bellman 1961)



Curse of Dimensionality
N =100 50 Cases, 50 Controls
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If interactions with minimal main effects are
the norm rather than the exception, can we
analyze all possible combinations of loci with
traditional approaches to detect purely
interaction effects ?

NO



How many combinations are there?

B ~500,000 SNPs to span the genome (HapMap)

2 X 10%6 combinations
* 1 combination per second

* 86400 seconds per day

2.979536 x 10%! days to complete
(8.163113 x 1018 years)

Number of Possible Combinations




How many combinations are there?

B ~500,000 SNPs to span the genome (HapMap)

5 Million SNPs in current technology

# models time**
5.00x106° 5 sec
1.25x1013 144 days
2.08x101° 2.4x108 days
2.60x10%° 3.01x10* days
2.60x103! 3.01x10%° days

Number of Possible Combinations

**assuming 1 CPU that performs 1 million
tests per second
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tests per second




Traditional Approach

B Advantages
Computationally feasible
Easy to interpret

M Disadvantages
Genes must have large main effects

Difficultto detect genes if interactions with other
genetic and environmental factors are important

CANNOT do an exhaustive search



New Statistical Approaches

* Review paper

For reprint orders, please contact:
reprints@futuremedicine.com

Novel methods for detecting epistasis in
pharmacogenomics studies

Alison A Mosinger! ) ) - - )
' The importance of gene-gene and gene-environment interactions in the underlyin
Maryiyn D Ritchie? & P g d d ying

Doavied M ReifS? genetic architecture of common, complex phenotypes is gaining wide recognition in the
field of pharmacogenomics. In epidemiological approaches to mapping genetic variants

TAuthor for correspondence . o . . . . .
that predict drug response, it is important that researchers investigate potential epistatic

!Nordh Carolina State

University, interactions. In the current review, we discuss data-mining tools available in genetic

fj"’f”f””"m'“ Research epidemiology to detect such interactions and appropriate applications. We survey several
erer; . . .

Department of Statisiics, classes of novel methods available and present an organized collection of successful

Raleigh. applications in the literature. Finally, we provide guidance as to how to incorporate these

NC 27695, USA novel methods into a genetic analysis. The overall goal of this paper is to aid researchers in

PVanderbilt University, developing an analysis plan that accounts for gene-gene and gene-environment in their
Cenrer for Human Genetics ping ysisp g g g

Research, own work.
Department of Malecular

* Pharmacogenomics. 2007 8(9) :1229-41.

* Reviews approximately 40 methods developed to detect gene-
gene and gene-environment interactions




New Statistical Approaches

Chen et al. BMC Genomics 2011, 12:344

http://www.biomedcentral.com/1471-2164/12/344
P BMC

Genomics

METHODOLOGY ARTICLE Open Access

Comparative analysis of methods for detecting
interacting loci

Li Chen', Guogiang Yu', Carl D Langefeld?, David J Miller’, Richard T Guy?, Jayaram Raghuram?, Xiguo Yuan',
David M Herrington® and Yue Wang'™

Abstract

Background: Interactions among genetic loci are believed to play an important role in disease risk. While many
methods have been proposed for detecting such interactions, their relative performance remains largely unclear,
mainly because different data sources, detection performance criteria, and experimental protocols were used in the
papers introducing these methods and in subsequent studies. Moreover, there have been very few studies strictly
focused on comparison of existing methods. Given the importance of detecting gene-gene and gene-environment
interactions, a rigorous, comprehensive comparison of performance and limitations of available interaction
detection methods is warranted.




New Statistical Approaches

Shang et al. BMC Bioinformatics 2011, 12:475
http://www.biomedcentral.com/1471-2105/12/475

BMC
Bioinformatics

METHODOLOGY ARTICLE Open Access

Performance analysis of novel methods for
detecting epistasis

Junliang Shang'’, Junying Zhang", Yan Sun®, Dan Liu', Daojun Ye' and Yaling Yin'?

Abstract

Background: Epistasis is recognized fundamentally important for understanding the mechanism of disease-causing
genetic variation. Though many novel methods for detecting epistasis have been proposed, few studies focus on
their comparison. Undertaking a comprehensive comparison study is an urgent task and a pathway of the
methods to real applications.

Results: This paper aims at a comparison study of epistasis detection methods through applying related software
packages on datasets. For this purpose, we categorize methods according to their search strategies, and select five
representative methods (TEAM, BOOST, SNPRuler, AntEpiSeeker and epiMODE) originating from different underlying
techniques for comparison. The methods are tested on simulated datasets with different size, various epistasis
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Epistasis in GWAS Data

Eyd : Lot

= Evaluate interactions in top hits from single-SNP
analysis

= Use prior biological knowledge to evaluate specific
combinations — “Candidate Epistasis”

Carlson CS, Eberle MA, Kruglyak L, Nickerson DA. Mapping complex disease loci in whole-genome association
studies. Nature 2004 Mav 27:429(6990):446-52.



Goal: to build biologically plausible
models of gene-gene interactions
to test for association using an
automated bioinformatics tool
based on biological features



The Biofilter

* Use publicly available databases to
establish relationships between
gene-products

* Suggestions of biological epistasis
between genes

* Integrating information from the
genome, transcriptome,and
proteome into analysis

Bush WS, Dudek SM, Ritchie MD. Biofilter:a knowledge-integration system for the multi-locus analysis
of genome-wide association studies. Pacific Symposium on Biocomputing,368-79 (2009).



LOKI: Library of Knowledge Integration

Genes and Protein, Gene, and
SNPS Drug Interactions
NCBI MINT

dbSNP BioGRID
Entrez PharmGKB
Ll Library of g
Knowledge
HEUE Integration CHeeANo
ECRs Pathways
Gene Ontology
UCSC KEGG
NetPath

Bush WS, Dudek SM, Ritchie MD. Biofilter:a knowledge-integration system for the multi-locus analysis
of genome-wide association studies. Pacific Symposium on Biocomputing,368-79 (2009).



The Biofilter

* Method described: Bush et al. 2009 Pacific Symposium on
Biocomputing, Pendergrass et al, BioData Mining,2013
Applications

* Multiple Sclerosis

* Bushetal. 2009 ASHG talk, 2011 Genes & Immunity
 HDL
 Turner et al. 2010 ASHG Talk, 2011 PLoS ONE
* HIV Pharmacogenomics

* Grady et al. 2010 ASHG poster, 2011 Pacific Symposium on
Biocomputing
* Lipid traits
* Holzinger et al. in preparation




Annotated List of
Loci
BIOfI Iter Loci 1, CHR, BP, RSID, Gene

Loci 2, CHR, BP, RSID, Gene

Source(s) to Loci 3, CHR, BP, RSID, Gene

3 Loci 4, CHR, BP,RSID, Gene
AnnOtate LISt Loci 5, CHR, BP,RSID, Gene

Loci 6, CHR, BP,RSID, Gene
Loci 7,CHR, BP,RSID, Gene
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Modeling

Link Loci or Link LOKI Genes Generate
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Candidate Epistasis Analysis of GWAS

Four Step Process
1. Relate SNPs to Genes

2. Relate genes to one another
3. Generate multi-SNP models using this information
4

Evaluate the multi-SNP models using statistical
technique



Relate SNPs to Genes
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LD-Spline: Mapping SNPs on genotyping platforms to genomic regions using patterns of linkage
disequilibrium. Bush WS, Chen G, Torstenson ES, Ritchie MD. BioData Min. 2009 Dec 3;2(1):7



http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bush%20WS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Chen%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Torstenson%20ES%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ritchie%20MD%22%5BAuthor%5D

Using Biofilter: Prioritizing Analysis

Candidate Gene/Regions Candidate Epistasis

* Previous Linkage Regions * KEGG (Pathways)

* DIP (Protein-protein interactions)
 PFAM (Protein families)

e GO (Gene Ontology)

* Reactome (Pathways)

Differential Gene Expression

Candidate Pathways

Known biology

* Netpath (Signal transduction)



Candidate Approaches

Pros

Smaller set of genes to explore
Fewer statistical tests

Results will have solid
interpretations

Cons

Limited by current state of
knowledge

Limitations of learning completely
novel biology



Genes and Immunity (2011) 12, 335-340
@ 2011 Macmillan Publishers Limited  All rights reserved 1466-4879/11

www.nature.com/gene

ORIGINAL ARTICLE

A knowledge-driven interaction analysis reveals potential
neurodegenerative mechanism of multiple sclerosis
susceptibility

WS Bush?, JL McCauley?, PL DeJager®, SM Dudek?, DA Hafler®, RA Gibson*, PM Matthews?,

L Kappos®, Y Naegelin®, CH Polman®, SL Hauser”, ] Oksenberg?, JL Haines' and MD Ritchie?,

the International Multiple Sclerosis Genetics Consortium

'Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University, Nashuville, TN, USA;
2Miami Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA; *Division of Molecular
Immunology, Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital and Harvard Medical School,
Boston, MA, USA; *GlaxoSmithKline, Research & Development, Middlesex, UK; Department of Neurology, University Hospital Basel,
Basel, Switzerland; °Departinent of Neurology, Vrije Universiteit Medical Centre, Amsterdam, The Netherlands and "Department of

= 930 trio families from US and UK (IMSGC)
= Genotyped on Affymetrix 500K array
" Post QC ~300,000 SNPs



"= Reduction of search space from 53 billion
models to 20 million models but this could

be reduced further

Full Model X1+ 05Xo + B3% X

Reduced Model /[ X+ [oX5

Table 1. Significant models from screen and validation Set I localized to calcium signaling and cytoskeleton regulation

+ Figures and tables index

| Mext table *+

Screen trio conditional

No. Locus 1 Locus 2 LR

chr | Gene SNP chr | Gene SNP Model fit | Interaction
1 7 SCIN rs2240571 13 CYFIPI | rs8025779 3.75E—-04 1.51E—04
2 14 ACTN1 rs17106421 | 22 MYHO rs1009150 8.93E-04 6.38E—05
3 1 CHRM3Z  rs528011 3 MYLK | rs4677905 | 5.57E—04 | 3.74E—-05
4 20 PlLCB4 | rs48316129 20 PILCBI rs6316415  9.23E—04 | 8.50E-05

'Bold’ indicates that these two models had significant model fit and interaction in all data sets.

Screen

probandfontrol LR

Model
fit
0.0001
0.0001
0.0005
0.0008

Interaction

0.0001
0.0001
0.0001
0.0009

Abbreviations: Chr, chromosome; LR, likelihood ratio test statistic; SMP, single-nucleotide polymorphism

Validation set T

Model
fit
0.0049
0.0082
0.0235
0.0443

Interaction

0.3565
0.0952
0.0025
0.0095




Figure 1
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Knowledge-Driven Multi-Locus Analysis Reveals Gene-
Gene Interactions Influencing HDL Cholesterol Level in
Two Independent EMR-Linked Biobanks

Stephen D. Turner’, Richard L. Berg? James G. Linneman?, Peggy L. Peissig?, Dana C. Crawford’,
Joshua C. Denny?, Dan M. Roden®?, Catherine A. McCarty®, Marylyn D. Ritchie’, Russell A. Wilke**

1 Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
of America, 2 Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America, 3 Department of Biomedical
Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America, 4 Division of Clinical Pharmacology, Department of Medicine,
Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America, 5 Department of Pharmacology, Vanderbilt University School of Medicine,
Mashville, Tennessee, United States of America, 6 Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America

= eMERGE Genome-wide association study (lllumina 660)

"= Phenotype: median HDL for anyone having 2+ HDL
measurementsin their EMR

=  Marshfield PMRP n=3903
= Vanderbilt BioVU n=1858

Marshfield i
Clinic @
Vanderbilt



Single Locus Analysis

Median HDL analysis,
— adjusting for Smoking, Age,
Age?, BMI, BMI?, sex.
MFLD Data
Post-QC Compare
522204 SNPs v — | results
3903 Samples Modeled HDL analysis,
censored by drug usage,
——p| onset of comorbidities,
adjusted for population
trends in age and BMI
Knowledge-Driven Multilocus Analysis
MFLD Data MFLD f’g’; List “g:‘,‘,?s‘::‘;ﬁ::“ Linear
Post-QC 5 at Regression
rs456 o 512315456 +—p z
522204 SNPs (789 rs456-rs789 Interaction
3903 Samples 101112 Analysis
sowom 7 [Sowseus | | sonsum e
Post-QC s . Regression
rs456 pep  18123-r8456 P> A
528978 SNPs rs789 rs456-rs789 Interaction
1858 Samples $101112 Analysis

Pun<0.05

Figure 1



Table 3. Gene-gene interaction models.

REP SNP 1 Gene 1 SNP 2 Gene2 MP, MPpPs MPps MPpy MProg MR® VB, VP2 VPs VPun VPmoa VR?
* 53927911 BCL2  rs4645900  BAX 0213 3901  —3890 0004 0018 0003 0805 5397 -5808 0042 0.154 0003
= 52271709 (7 rs6699859  (8A 1203 1.068 1776 0,005 0028 0002 —1173 —1.176 2433 0020 0.138 0003
* 5910497  GAILNT2 rs4621175  GAINT3  —0727 —1250 2347 0003 0013 0003 —08%0 —1976 2.148 0024 0.129 0003
* 154621175 GALNT3 rs4846930  GALNT2 1213 -0726 2291 0004 0014 0003 -1750 -0955 2261 0017 0100 0003
* 54621175 GALNT3 rs10864732 GAINT2  —1.179 —0726 2243 0004 0017 0003 —1641 -0985 2245 0019 0106 0003
* 5886724 RPA3  rs7536088  RPA2 1493 1713 1818 0000 0002 0004 —2064 —1266 1995 0019 009 0003
* 5886724 RPA3  rs17257252  RPA2 0890 1182  —1703 0003 0029 0002 -2035 -1938 2795 0007 0046 0004
= 15001675 GALNT2 rs4621175  GALNT3 1216  2.109 2521 0004 0004 0004 2114 -1512 2535 0037 0077 0004
* 51471915 GALNT2 rs12963790 GAINTI  —0410 —0447 2778 0004 0020 0003 -2114 0098 —3487 0037 0002 0008
= 5253 LPL rs2515614  ABCAT 0340 1098 1441 0006 0011 0003 —0618 -2797 2790 0001 0006 0007
=2 5253 LPL rs2472509  ABCAT  —0338 -1.113 1438 0006 0011 0003 —0399 -2797 2790 0.001 0006 0007

e Tested 22,769 two-SNP models in Marshfield (discovery).

— 11 significant (p,,,<0.01, p.,,,.<0.05)

e Tested 11 two-SNP models in BioVU (replication).
— 6 marginally significant (p,,,<0.05, p,,,,,<0.10).

— 2 had consistent direction for all three f3s.



Application of the Biofilter:

HDL - eMERGE

* Main effects of each SNP in each dataset reduce HDL.

* Interaction effect coefficientis positive
* Joint effectis nonlinear
e Epistasis — heterogeneity, antagonism, negative epistasis

* This kind of effect also seen in 4/5 sig. GxG interactions in
IDDM (Barrett et al. 2009 Nature Genetics)

. ) ] BioVU
SNP1 Genel SNP 2 Gene2 | MF B, | MF B, MF B, MFP |BioVU B, | BioVU f3, | BioVU 3, )
rs253 LPL rs2515614 | ABCA1l 0.006 + 0.001
rs253 LPL rs2472509 | ABCA1l 0.006 + 0.001

Turner et al, PLoS ONE 2011.
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e LPL mediates the release of FFA and TG from HDL
particles.

 ABCA1 shuttles free cholesterol into HDL particles
during intravascular remodeling.

. ) ] BioVU
SNP 1 Gene 1 SNP2 | Gene2 |MF B,|MF B,| MF B5| MFP |BioVU B, |BioVU B,|BioVUp, o
rs253 LPL rs2515614 | ABCA1 0.006 + 0.001
rs253 LPL rs2472509 | ABCA1 0.006 + 0.001

Turner et al, PLoS ONE 2011.
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Beyond simple epistasis models....
&

MINI REVIEW ARTICLE
pubfshed: 12 Jenuary 2012
doi: 10.338%fgene 2011.00109

{rentiers in
GENETICS

Six degrees of epistasis: statistical network models
for GWAS

B. A. McKinney'* and Nicholas M. Pajewski*

! Department of Mathematics, Tanoy School of Computer Scisnos, |
¥ Depatment of Biostatistical Saences, Waks Forest School of Msa
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Pathway Analysis Approaches

* Ingenuity systems pathway analysis
* IPA www.ingenuity.com (free trial)

BIOLOGICAL ANALYSIS AND INTERPRETATION WORKFLOW

INTERPRET BIOLOGICAL MEANING

Visualize Data in
Context

« Exploration
« Navigation

Ingenu
b e B
* Accurate data s
bl Detailed structure =
* Millions of findings



http://www.ingenuity.com/

Pathway Analysis Approaches

e Database for Annotation, Visualization and
Integrated Discovery (DAVID )

* provides a comprehensive set of functional annotation
tools for investigators to understand biological meaning
behind large list of genes



| PROTOCOL

Systematic and integrative analysis of large gene
lists using DAVID bioinformatics resources

Da Wei Huang'?, Brad T Sherman!? & Richard A Lempicki!

Laboratory of Immunopathogenesis and Bioinformatics, Clinical Services Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland 21702,
USA. “These authors contributed equally to this work. Correspondence should be addressed to R.A.L (rlempicdi@mailnih.gov) or D.W.H. (huangdawei@mail.nih.gov)

Published online 18 December 2008; doi:10.1038/nprot.2008.211

DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically
extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and
integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first
requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and
pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation
table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes
that are enriched in genome-scale studies.

e Step-by-step instructions for using DAVID



DAVID tools are able to...

O 0 N O U e wWDN e

O T N S G ¢
w' N = O

Identify enriched biological themes, particularly GO terms
Discover enriched functional-related gene groups
Cluster redundant annotation terms

Visualize genes on BioCarta & KEGG pathway maps
Display related many-genes-to-many-termson 2-D view
Search for other functionally related genes not in the list
List interacting proteins

Explore gene names in batch

Link gene-disease associations

Highlight protein functional domains and motifs
Redirect to related literatures

Convert gene identifiers from one type to another

And more



Pathway Analysis Approaches

k. A%y
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Tutorials | Samples |Documents| VisANT Community Interaction Statistics

Plugin Tutorials is listed as part of Plugin documents

Video Tutorial MY

Query/Create interaction networks Screen Short

What you will learn from this tutorial:

* Exploratory navigation of interaction networks starting with
any specified protein/gene

* Find the different level of neighbors (1st level neighbors are

the directly interacted genes/proteins ...) for a given list of
genes/proteins, and how to check whether the
genes/proteins are connected

#* Find the connections between a given set of genes/proteins

* Create your own network using a list of pairwise correlations
(edge-list format)

Start the Tutorial
Use VisANT to visualize networks in your own web site Screen Short

What you will learn from this tutorial:

Paatein na.lmlp‘j‘:e;‘:s i apaclas |Home sapiens j

* Add a simple HTTP link to visualize your data in VisANT

Search for Intasactions of Level 1 | Seaich boa Inderactions of Leval2 |

¢ Embedding VisANT applet in your web page with

P e omueT P oA . aWdda At T Raan



Pathway Analysis Approaches

REVIEW

Prioritizing GWAS Results: A Review of Statistical
Methods and Recommendations for Their Application

Rita M. Cantor,* Kenneth Lange,!? and Janet S. Sinsheimer!?

Genome-wide association studies (GWAS) have rapidly become
a standard method for disease gene discovery. A substantial
number of recent GWAS indicate that for most disorders, only
a few common variants are implicated and the associated SNPs
explain only a small fraction of the genetic risk. This review is
written from the viewpoint that indings from the GWAS provide
preliminary genetic information that is available for additional
analysis by statistical procedures that accumulate evidence, and
that these secondary analyses are very likely to provide valuable
information that will help prioritize the strongest constellations

explain much of the risk for each disorder if the “common
disease, common gene"” hypothesis were the rule. Thus, in
addition to their focus on revealing the biological contri-
butions to complex traits and disorders, the results of
GWAS also provide substantive information regarding
the extent of the contributions made by common variants
to complex traits and disorders.

GWAS require three essential elements: (1) sutficiently
large study samples from populations that effectively



Alternative pathway approaches

* Multiple pathway approaches in development
* Gene set enrichment analysis (GSEA)
* INTERSNP
* PATH
* Prioritizer
* and many more.....

* Many use overlapping sources of data

* All have strengths and weaknesses



Alternative pathway approaches

SEE COMMENTARY

Gene set enrichment analysis: A knowledge-based

€« C O www.broadinstitute.org/gsea/indexsp

Facebook (| Ritchielab Bc BC|SNPmax Main M... [Bx] RLab:Main - CCGB [T Interesting-Websites () RitchieLab (3) pinterest () Pinlt bc. BC|SNPmax Main M

BSEA

GCene Set Enrichment Analysis

Downloads Molecular Signatures Database

Overview

Melecular Profile Data
Gene Set Enrichment Analysis (GSEA) is a computational method that
determines whether an a priori defined set of genes shows statistically
zignificant, concordant differences between two biological states

(e.g. phenotypes).

Enriched Sets

Fori e st SAUTES HE XM TRAATIS_GIR IS

From this web site, vou can:

——

=1 UL

L. | e —
Download the GSEA software and additional resources to analvze,
annotate and interpret enrichment results.

Explore the Molecular Signatures Database (MSigDB), a collection
of annotated gene sets for use with GSEA software.

View documentation describing GSE&A and MSigDE.
Gene Set Database
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INTERSNP |

IMBIE Genome-wide Interaction Analysis u n |Ve r’srta'tbonn

INTERSNPF is a software for genome-wide interaction analysis (GWIA) of case-control SNP data and quantitative
traits. SNPs are selected for joint analysis using a priori information. Sources of information to define meaningful
strategies can be statistical evidence (single marker association at a moderate level, computed from the own data)

and genetic/biologic relevance {genomic location, function class or pathway information). Our software product
implements

* A logistic regression framework as well as log-linear models for joint analysis of multiple SNPs.
* Automatic handling of SNP annotation and pathway information

Methods to account for multiple testing, in particular, Monte-Carlo simulations to judge genome-wide

significance.
* A linear regression framework for analysis of quantitative traits

* Pathway Association Analysis (SNP ratio, Fisher score, Gene ratio, Fisher Max, Fisher MaxPlus)

* Genome-wide Haplotype Analysis
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Path: a tool to facilitate pathway-based genetic

association analysis
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ABSTRACT

Summary: Traditional methods of genetic study dasign and analkysis
work well under the scenario that a handful of single nuclectide
polymorphisms (SNPs) indopondently contribute to the risk of
diseasa. For complex disessas, suscaptibility may be determined
not by a single SNP, but rather a complex interplay botween
SNPs. For lame studies involving hundreds of thousands of
SNPs, a brute force search of all possible combinations of SHPs
associated with disease is not only inefficient, but also results
in @ multiple tasting paradigm, whereby larger and larger sample
sizes arm neaded to maintain statistical power. Pathway-basad
methods are an example of ome of the many approaches in
identifying a subsat of SNPs to test for interaction. To help
determine which SNP-5MP interactions to test, we developed Path, a
software application designed to help researchers interface their data
with biolegical information from several bicinformatics resourcas.
To thizs end, our application brings together cumently available

For these kinds of larce studies, the simple task of stonng,
reineving and visualizing resulis of an analysis has become
surprisingly challenmng. Although several software apphicabions,
such as PLINK (Purcell er al., 2007), were designed to help
analyze genctic association data and subsequently help to store and
visualize resulis, none was designed to retneve information from
several bicinformatics resources and to convemently integrate this
knowledge with the results from a genetic association study.

We were, therefore, motivated to develop Path, a softeare
application designed to help ressarchers interface their data with
biclogical information from several bicinformatics resources. This
information may be used to help zencrate biologically plausible
hypotheses for testing genc—gene interactions. The Path software
i5 a first-step biminformatics approach to investigate genc—genc
interactions in genetic association studies. Examples of the type of
information retneved and the bioinformatics resources accessed by
Path are shown in Table 1.
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: ok EW! Available Networks
Whole Genome Association "= S —
J Progress has been made on a new version of Prioritizer: four different gene i
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oA . - reliability of detecting real disease SNPs by utilizing our functional DIF, REACTOME, KEGG, GO,
human gene network. GEO, SMD and varicus other
- M - g sources.
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Use your own network

Pricritizer can also

. use other gene
Introduction b Py

provided how to use

Although the majarity of common diseases are complex, resulting from many different genes with weak AT ELT TR E AT BT

effects, it can be assumed there are often only a limiting number of molecular pathways that contribute to
disease etiology. Linkage studies have led to the identification of a considerable number of susceptibility
loci, but lag behind in pinpointing genes contributing to disease because these regions usually span 10s
of Mb's. To aid in the identification of causative genes we propose a prioritization method for positional
candidate genes, by assuming that the majority of causative genes are functionally closely related.

Methods

‘We used a Bayesian approach to generate a , based upon data from Gene Ontology (GO,
KEGG, BIMD, HPRD, Reactome, a dataset which contained approximately 70,000 predicted protein-protein
interactions (Lehner and Fraser, 2004}, 3,000 predicted human protein-protein interactions (Stelzl et al,




Alternative knowledge base approaches

* Protein-protein interaction databases
* Gene ontology
* Function-based GWAS

e Using eQTL information

* Text mining applications
* Textspresso
* GRAIL
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DAPPLE

What is DAPPLE?

DAPPLE stands for Disease Association Protein-Protein Link Evaluator. DAPPLE looks for significant
physical connectivity among proteins encoded for by genes in loci associated to disease according to protein-
protein interactions reported in the literature. The hypothesis behind DAPPLE is that causal genetic variation
affects a limited set of underlying mechanisms that are detectable by protein-protein interactions. Please refer
to the DAPFLE publication for full details.
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ARTICLE

Gene Ontology Analysis of GWA Study Data Sets
Provides Insights into the Biology of Bipolar Disorder

Peter Holmans,* Elaine K. Green,! Jaspreet Singh Pahwa,! Manuel A.R. Ferreira,?31.6.7.8
Shaun M. Purcell,2.3:4.6.7 Pamela Sklar,23456.7 The Wellcome Trust Case-Control Consortium,?
Michael J. Owen,! Michael C. O'Donovan,! and Nick Craddock!

We present a method for testing overrepresentation of biological pathways, indexed by gene-ontology terms, in lists of significant SNPs
from genome-wide association studies. This method corrects for linkage disequilibrium between SNPs, variable gene size, and multiple
testing of nonindependent pathways. The method was applied to the Wellcome Trust Case-Control Consortium Crohn disease (CD) data
set. At a general level, the biological basis of CD is relatively well known for a complex genetic trait, and it thus acted as a test of the
method. The method, known as ALIGATOR (Association LIst Go AnnoTatOR), successfully detected biological pathways implicated
in CD. The method was also applied to a meta-analysis of bipolar disorder, and it implicated the modulation of transcription and cellular
activity, including that which occurs via hormonal action, as an important player in pathogenesis.

http://x004.psycm.uwcm.ac.uk/~peter/
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INSTITUTE What is Broad

GRAIL: Gene Relationships Across
Implicated Loci

GRAIL is a tool to examine relationships between genes in different disease associated
loci. Given several genomic regions or SNPs associated with a particular phenotype or
disease, GRAIL looks for similarities in the published scientific text among the associated
genes.

As input, users can upload either (1) SNPs that have emerged from a genome-wide
association study or (2) genomic regions that have emerged from a linkage scan or are
associated common or rare copy number variants. SNPs should be listed according to
their rs#'s and must be listed in HapMap. Genomic Regions are specified by a user-
defined identifier, the chromosome that it is located on, and the start and end base-pair
positions for the region.
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* Interpretation \'i\?@
e Easy to create a story Proceed With Care
And Knowledge

* Size of gene/pathway

* More likely to have significant results by chance if they are
bigger

* Use methods that perform permutation testing to account
for gene/pathway size
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Polygenic modeling (En Masse

REPORT
GCTA: A Tool for Genome-wide Complex Trait Analysis

Jian Yang'* 5. Hong Lee,! Michael E. Goddard,** and Peter M. Visscher!

For most human complex diseases and traits, SNPs identified by genome-wide association studies (GWAS) explain only a small fraction
of the heritability. Here we report a user-friendly software tool called genome-wide complex trait analysis (GCTA), which was developed
based on a method we recenty developed to addeess the “missing heritability” problem. GCTA estimates the varianoe explained by all
the SMPs on achromosome or on the whole genome for a complex trait rather than testing the association of any particular SNP to the
trait. We introduce GCTAS five main functions: data management, estimation of the genetic relationships from SKNPs, mixed linear
model analysis of variance explained by the SNPs, estimation of the linkage disequilibrium strocture, and GWAS simulation. We focus
on the function of estimating the variance explained by all the SNPs on the X chromosome and testing the hypotheses of dosage
compensation. The GCTA software is a versatile tool to estimate and partition complex trait variation with lange GWAS data sets.

76 The American Journal of Human Genetics 88, 76-82, January 7, 2011
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Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder

The International Schizophrenia Consortium™*

Schizophrenia is a severe mental disorder with a lifetime risk of
about 1%, characterized by hallucinations, delusions and cognitive
deficits, with heritability estimated at up to 80%'2. We performed a
genome-wide association study of 3,322 European individuals with
schizophrenia and 3,587 controls. Here we show, using two analytic
approaches, the extent to which common genetic variation underlies
the riskof schizophrenia. First, we implicate the major histocompati-
bility complex. Second, we provide molecular genetic evidence fora
substantial polygenic component to the risk of schizophrenia invol-
ving thousands of common alleles of very small effect. We show that
this component also contributes to the risk of bipolar disorder, but
not to several non-psychiatric diseases.

We genotyped the International Schizophrenia Consortium (ISC)
case-control sample for up to ~1 million single nucleotide poly-
morphisms (SNPs), augmented by imputed common HapMap
SNPs. In the genome-wide association study (GWAS; genomic con-
trol 2o = 1.0% Supplementary Table 1 and Supplementary Figs
1-3), the most associated genotyped SNP (P=3.4 X 1077) was
located in the first intron of myesin XVIIIB (MYOI8B) on chro-
mosome 22. The second strongest association comprised more than
450 SNPs on chromosome 6p spanning the major histocompatibility
complex (MHC; Fig. 1). There is some evidence for between-site
heterogeneity in both allele frequencies and odds ratios (Table 1).
We observed associations consistent with previous reports in the
22q11.2 deletion region and ZNF804A (ref. 3) (Supplementary

- &0
rs3130375
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Figure 1| Association results across the MHC region. Results are shown as
log;o P value) for genotyped SNPs. The most associated SNP isshownasa
blue diamond. The colour of the remaining markers reflects r* with
rs3130375, light pink, r* > 0.1, red, r* > 0.8. The recombination rate from
the CEU HapMap (second y axis) is plotted in light blue.

Table 2, Supplementary Fig. 2 and section 5 and 6 in Supplemen-
tary Information).

The best imputed SNP, which reached genome-wide significance
(rs3130297, P=4.79 % 10 %, T allele odds ratio = 0.747, minor allele
frequency (MAF) =0.114, 32.3 megabases (Mb)), was also in the
MHC, 7kilobases (kb) from NOTCH4, a gene with previously
reported associations with schizophrenia®, We imputed classical
human leukocyte antigen (HLA) alleles; six were significant at
P< 10", found on the ancestral European haplotype® (Table 1, Sup-
plementary Table 3 and section 3 in Supplementary Information).
However, it was not possible to ascribe the association to a specific
HLA allele, haplotype or region (Supplementary Table 3 and
Supplementary Fig. 4).

We exchanged GWAS summary results with the Molecular
Genetics of Schizophrenia (MGS) and SGENE consortia for geno-
typed SNPs with P< 10" *. There were 8,008 casesand 19,077 controls
of European descent in the combined sample (see refs 6, 7 and section
7 in Supplementary Information). Our top genotyped MHC SNP
(rs3130375) had P= 0.086 and P = 0.14 in MGS and SGENE, respec-
tively. Considering the combined results for genotyped and imputed
SNPs across the MHC region more broadly, rs13194053 had a
genome-wide significant combined P=9.5 X 1077 (ISC, MGS and
SGENE: P=3x10 % 1% 10 *and 1 X 10 *, respectively; C allele

Table 1| MHC association for the most significant genotyped SNP
rs3130375

a MHC assaciation for 53130375 by sample

Frequency (rs3130375, A allele)

Sample Ancestry Cases Contrals  Pvalue
University of Aberdeen Scottish 0.132 0.168 0.0060
University of Edinburgh Scottish 0.137 0.135 0.8930
University College London®* British 0.132 0.143 04836
Trinity College Dublin Irish 0.110 0.170 0.0012
Cardiff University Bulgarian 0.077 0.084 05602
Portuguese Island Collection Portuguese  0.048 0.061 03510
Karolinska Institutet (5.0)  Swedish 0.043 0.119 0.0004
Karolinska Institutet (6.0)  Swedish 0.089 0.142 0.0040

Ib MHC assaciation for classical HLA alleles with P< 131072

HLA allele Frequencyt  Oddsratie Pvakie
HLA-A*0101 0.103 0.785 4x107
HLA-C*0701 0.113 0.778 5x 10’5
HLA-B*0801 0.068 0.757 3x107
HLA-DRB*(0301 0.121 0.768 3x107¢
HLA-DQB*0201 0.210 0.857 4x107%
HLA-DQA*0501 0.205 0.798 6x1077

Total sample Coc hran-Mantel-Haenszel P= 4 % 10 7: Breslow-Day heterogeneity test
P=002 (df. =6).

*SNP failed genaty ping quality control in UCL. Aliele frequency for UCL based on imputed
Eenotypes.

¥ Frequency is estimated population frequency.

*Lists of authors and their affiliations appear at the end of the paper.
748
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Evidence for Polygenic Susceptibility
to Multiple Sclerosis—The Shape of Things to Come

The International Multiple Sclerosis Genetics Consortium (IMSGC)1.*

It is well established that the risk of developing multiple sclerosis is substantially increased in the relatives of affected individuals and
that most of this increase is genetically determined. The observed pattern of familial secourrencoe risk has long suggested that multiple
variants are involwed, but it has poven difficult t© identify individual risk variants and litde has been established about the genetic
amhitecture undedying susceptibility. By wsing data from two independent genome-wide association studies (GWAS), we demonstrabe
that a substantial proportion of the thousands of vadants that individually fail to show statistically significant evidenoe of association
hawve allele frequencies in cases that ame skewed away fom the null distribution through the effects of multiple asyet-unident fed risk
loci. The collective effect of 12,627 SN Ps with Cochran-Mantel-Haenszel test (p < 0.2) in our discovery GWAS set optimally explains ~3%
of the variance in MS risk in our independent target GWAS set, estimated by Nagelkede's pseudo-R®. This model has a highly significant
fit (p = 9.90E-19). These results statistically demonstmte a polygenic component to MS susceptibility and sugpest that the risk alleles
ident fied to date represent just the tip of an ioeberg of risk variants likely to include hundreds of modest effects and possibly thous ands
of very small effects.

The American Journal of Human Genetics 88, 621-625, April 9, 2010 621
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Polygenic Modeling of Genome-Wide Association Studies:
An Application to Prostate and Breast Cancer

John S. Witte and Thomas J. Hoffmann

Abstract

Genome-wide association studies (GWAS) have successfully detected and replicated associations with numerous
diseases, including cancers of the prostate and breast. These findings are helping clarify the genomic basis of such
diseases, but appear to explain little of disease heritability. This limitation might reflect the focus of conventional
GWAS on a small set of the most statistically significant associations with disease. More information might be
obtained by analyzing GWAS using a polygenic model, which allows for the possibility that thousands of genetic
variants could impact disease. Furthermore, there may exist common polygenic effects between potentially related
phenotypes (e.g., prostate and breast cancer). Here we present and apply a polygenic model to GWAS of prostate
and breast cancer. Our resultsindicate that the polygenic model can explain an increasing—albeit low—amount of
heritability for both of these cancers, even when excluding the most statistically significant associations. In ad-
dition, nonaggressive prostate cancer and breast cancer appear to share a common polygenic model, potentially
reflecting a similar underlying biology. This supports the further development and application of polygenic
models to genomic data.
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Bayesian inference analyses of the polygenic architecture
of rheumatoid arthritis

Eli A Stahl'=3*, Daniel Wegmann®, Gosia Trynka®, Javier Gutierrez-Achury®, Ron Do?¢, Benjamin F Voight?,
Peter Kraft®, Robert Chen!—3, Henrik J Kallberg®, Fina A S Kurreeman!~3, Diabetes Genetics Replication and
Meta-analysis Consortium!?, Myocardial Infarction Genetics Consortium!?, Sekar Kathiresan®%, Cisca Wijmenga®,
Peter K Gregersen!!, Lars Alfredsson®, Katherine A Siminovitch!2, Jane Worthington'?, Paul 1 W de Bakker®>!%15,
Soumya Raychaudhuri'~*!'® & Robert M Plenge!~316
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ANALYSIS

Common SNPs explain a large proportion of the heritability

for human height

Jian Yang!, Beben Benyamin!, Brian P McEvoy!, Scott Gordon!, Anjali K Henders!, Dale R Nyholt!,
Pamela A Madden?, Andrew C Heath?, Nicholas G Martin!, Grant W Montgomery!, Michael E Goddard® &

Peter M Visscher!

SNPs discovered by genome-wide association studies (GWASs)
account for only a small fraction of the genetic variation of
complex traits in human populations. Where is the remaining
heritability? We estimated the proportion of variance for
human height explained by 294,831 5NPs genotyped on

3,925 unrelated individuals using a linear model analysis, and
validated the estimation method with simulations based on
the observed genotype data. We show that 45% of variance
can be explained by considering all SNPs simultaneously. Thus,
most of the heritability is not missing but has not previously
been detected because the individual effects are too small

to pass stringent significance tests. We provide evidence

that the remaining heritability is due to incomplete linkage
disequilibrium between causal variants and genotyped SNPs,
exacerbated by causal variants having lower minor allele
frequency than the SNPs explored to date.

of variation that their effects do not reach stringent significance
thresholds and/or the causal variants are not in complete linkage
disequilibrium (LD) with the SNPs that have been genotyped. Lack
of complete LD might, for instance, occur if causal variants have lower
minor allele frequency (MAF) than genotyped SNPs. Here we test
these two hypotheses and estimate the contribution of each to the
heritability of height in humans as a model complex trait.

Height in humans is a classical quantitative trait, easy to measure
and studied for well over a century as a model for investigating the
genetic basis of complex traits®!%. The heritability of height has been
estimated to be ~0.8 (refs. 9,11-13). Rare mutations that cause extreme
short or tall stature have been found*!®, but these do not explain
much of the variation in the general population. Recent GWASs on
tens of thousands of individuals have detected ~50 variants that are
associated with height in the population, but these in total account
for only ~5% of phenotypic variance!6-1%,

Data from a GWAS that are collected to detect statistical associations
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Genomic Convergence ”

Expression

* Multifactor approach that combines different kinds
of genetic data

* |dentify and prioritize susceptibility genes for
complex traits

* Assumption

* Regions of the genome that harbor susceptibility genes
will show evidence of linkage, association, and/or
differential gene expression
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Human Molecular Genetics, 2003, Vol. 12, No. 6 671-676
DOI: 10.1093/hmg/dde070

Genomic convergence: identifying candidate genes
for Parkinson’s disease by combining serial
analysis of gene expression and genetic linkage

Michael A. Hauser™*, Yi-Ju Li', Satoshi Takeuchi', Robert Walters', Maher Noureddine’,
Melinda Maready’, Tiffany Darden’, Christine Hulette®, Eden Martin', Elizabeth Hauser",
Hong Xu', Don Schmechel®, Judith E. Stenger’, Fred Dietrich? and Jeffery Vance'

'Center for Human Genetics, 2Department of Molecular Genetics and Microbiology, *Department of Pathology, and
"‘Departmem of Medicine, Duke University, Durham, NC 27710, USA
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Human Mutation

OFFICIAL JOURNAL

Genomic Convergence to Identify Candidate Genes for HGV§}

HUMAN GENOME

Alzheimer Disease on Chromosome 10 VARIATION SOCIETY

www.hgvs.org

Xueying Liang,' Michael Slifer,” Eden R. Martin,> Nathalie Schnetz-Boutaud,' Jackie Bartlett,' Brent Anderson,’
Stephan Ziichner? Harry Gwirtsman,® John R. Gilbert,? Margaret A. Pericak-Vance,” and Jonathan L. Haines'*

'Center for Human Genetics Research and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
2Miami Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
*Department of Psychiatry, VA Hospital Medical Center, Memphis, Tennessee

Communicated by Michael Dean
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Genomic Convergence Analysis of Schizophrenia: mRNA

Sequencing Reveals Altered Synaptic Vesicular Transport
in Post-Mortem Cerebellum

Joann Mudge', Neil A. Miller', Irina KhrebtukovaZ, Ingrid E. Lindquist', Gregory D. May’, Jim J. Huntley’,
Shujun Luo?, Lu Zhang?, Jennifer C. van Velkinburgh', Andrew D. Farmer', Sharon Lewis', William D.
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Molecular biology is complex



Meta-dimensional

* Meta- (from Greek: peta = "after"”, "beyond", "with",

"adjacent”, "self") to indicate a concept which is an
abstraction from another concept

* Meta-dimensional analysis of phenotypes
* Abstracting from multiple data source
e Abstracting from multiple data types
* Abstracting from multiple data sets
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ATHENA

* Analysis Tool for Heritable and Environmental
Network Associations
* Integrate genetic, environmental, and prior biological
knowledge
* Thorough data analysis

 Combination of categorical and continuous independent
and dependent variables
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For reprint orders, please contact: reprints@futuremedicine.com

Integrating heterogeneous high-throughput data for
meta-dimensional pharmacogenomics and
disease-related studies

The current paradigm of human genetics research is to analyze variation of a single data type (i.e., DNA
sequence or RNA levels) to detect genes and pathways that underlie complex traits such as disease state
or drug response. While these studies have detected thousands of variations that associate with hundreds
of complex phenotypes, much of the estimated heritability, or trait variability due to genetic factors,
remain unexplained. We may be able to account for a portion of the missing heritability if we incorporate
a systems biology approach into these analyses. Rapid technological advances will make it possible for
scientists to explore this hypothesis via the generation of high-throughput omics data - transcriptomic,
proteomic and methylomic to name a few. Analyzing this ‘'meta-dimensional’ data will require clever
statistical techniques that allow for the integration of qualitative and quantitative predictor variables. For
this article, we examine two major categories of approaches for integrated data analysis, give examples
of their use in experimental and in silico datasets, and assess the limitations of each method.

KEYWORDS: computational methods data integration pharmacogenomics Emily R Holzinger'~
systems biology & Marylyn D Ritchie*?
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Figure 1. Variations of the triangle method.
eQTL: Expression quantitative trait loci.
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Figure 2. Decision tree example. For the SNP variables, the genotypes are
represented as: 0: no minor alleles; 1: one minor allele; and 2: two minor alleles.
The up and down dashed arrows indicate increased and decreased gene
expression, respectively.

EXP: Gene expression.
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Figure 3. Bayesian network example with direct and indirect effects.
EXP: Gene expression; PHENO: Phenotype.
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REVIEW

PERSONALIZED MEDICINE

NEW: Network-Enabled Wisdom in Biology,

Medicine, and Health Care

Eric E. Schadt® and Johan L. M. Bjorkegren®-*#

Complete repertoires of molecular activity in and between tissues provided by new high-dimensional “omics”
technologies hold great promise for characterizing human physiology at all levels of biclogical hierarchies. The
combined effects of genetic and environmental perturbations at any level of these hierarchies can lead to vicious
cycles of pathology and complex systemic diseases. The challenge lies in extracting all relevant information from
the rapidly increasing volumes of omics data and translating this information first into knowledge and ultimately
into wisdom that can yield clinically actionable results. Here, we discuss how molecular networks are central to
the implementation of this new biology in medicine and translation to preventive and personalized health care.

INTRODUCTION

Next-generation technologies that routindy measure biological pa-
rameters on a genome-wide scale (“omics” data)—such as DNA var-
iations and epigenetic modifications, RN A and protein concentrations,
and a variety of metabolites—are continuously being refined and of-
fered at ever-decreasing costs. The resulting oceans of molecular data
{moving quickly from the petabyte to exabyte scale or, even more sca-
ry, zetabyte—that's 21 zeros) cannot be dedphered with traditional
mathematical analyses carried out on isolated computers. Nor is the
traditional representation of biological processes as linear pathways suf-
ficient to represent the hierarchy of levels of molecular and higher-
order regulation, and the interplay that defines human physiclogy and

individuals and their environment in ways that affect disease [questions
remain as to the meaning of the disease assodations observed in sodal
networks (1)]. The architecture of biological networks shares similarities
with well-studied ones in other disaplines, such as sodal and trangpor-
tation networks. Like these large-scale information networks, malecular
networks in biology are sparse and follow a power-law distrbution in
which most nodes have few interactions (say, one to three), whereas a
smaller number, referred to as hub nodes, have many interactions (tens to
hundreds or even thousands) (2) (Hg. 1).

Mapping the connedtivity structure of networks (that is, the topology)
is crudal for understanding how bidlogical processes are defined at the
molecular level, how they can be disrupted to cause disease, and how we
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1 am out of memory

Arrrgghhh!
They are all in different formats

Do something!
o2 Use Perl! Java!
> ...whatever!
But PARSE them!
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Just because we have not found it
vet, doesn’t mean it’s not there.....
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