

Biofilter
User’s Guide

version 2.2

The information contained in this document is the sole property of the lab of Dr. Marylyn Ritchie
Unauthorized reproduction is prohibited. Last updated May 21, 2014

 2

Table of Contents

Introduction .. 6
What is Biofilter? ... 6
Why use Biofilter? ... 6
Library of Knowledge Integration (LOKI) ... 6
Knowledge Sources .. 7
Data Types .. 8
Analysis Modes ... 9

Filtering ... 9
Annotation .. 9
Modeling ... 10

Primary and Alternate Input Datasets ... 10
Identifiers .. 11

Installation & Setup ... 12
Prerequisites .. 12
Platforms .. 12
Installing Biofilter .. 12
Compiling Prior Knowledge ... 12

LOKI Build Script Options ... 13
Updating & Archiving Prior Knowledge .. 14
LD Profiles ... 15

Using Biofilter ... 16
Configuration Options .. 16

--help / HELP .. 16
--version / VERSION .. 16
--report-configuration / REPORT_CONFIGURATION ... 16
--report-replication-fingerprint / REPORT_REPLICATION_FINGERPRINT .. 17

Prior Knowledge Options .. 17
--knowledge / KNOWLEDGE ... 17
--report-genome-build / REPORT_GENOME_BUILD .. 17
--report-gene-name-stats / REPORT_GENE_NAME_STATS ... 17
--report-group-name-stats / REPORT_GROUP_NAME_STATS ... 17
--allow-unvalidated-snp-positions / ALLOW_UNVALIDATED_SNP_POSITIONS ... 17
--allow-ambiguous-knowledge / ALLOW_AMBIGUOUS_KNOWLEDGE .. 17
--reduce-ambiguous-knowledge / REDUCE_AMBIGUOUS_KNOWLEDGE .. 17
--report-ld-profiles / REPORT_LD_PROFILES ... 18
--ld-profile / LD_PROFILE .. 18
--verify-biofilter-version / VERIFY_BIOFILTER_VERSION ... 18
--verify-loki-version / VERIFY_LOKI_VERSION ... 18
--verify-source-loader / VERIFY_SOURCE_LOADER ... 18
--verify-source-option / VERIFY_SOURCE_OPTION .. 18
--verify-source-file / VERIFY_SOURCE_FILE .. 18

Primary Input Data Options ... 18
--snp / SNP ... 18
--snp-file / SNP_FILE ... 19
--position / POSITION .. 19
--position-file / POSITION_FILE .. 19
--region / REGION .. 19
--region-file / REGION_FILE .. 19
--gene / GENE .. 19

 3

--gene-file / GENE_FILE... 19
--gene-identifier-type / GENE_IDENTIFIER_TYPE ... 19
--allow-ambiguous-genes / ALLOW_AMBIGUOUS_GENES ... 20
--gene-search / GENE_SEARCH .. 20
--group / GROUP ... 20
--group-file / GROUP_FILE ... 20
--group-identifier-type / GROUP_IDENTIFIER_TYPE .. 20
--allow-ambiguous-groups / ALLOW_AMBIGUOUS_GROUPS .. 20
--group-search / GROUP_SEARCH .. 20
--source / SOURCE ... 20
--source-file / SOURCE_FILE ... 20

Alternate Input Data Options .. 21
--alt-snp / ALT_SNP ... 21
--alt-snp-file / ALT_SNP_FILE ... 21
--alt-position / ALT_POSITION ... 21
--alt-position-file / ALT_POSITION_FILE ... 21
--alt-region / ALT_REGION ... 21
--alt-region-file / ALT_REGION_FILE ... 21
--alt-gene / ALT_GENE ... 21
--alt-gene-file / ALT_GENE_FILE ... 21
--alt-gene-search / ALT_GENE_SEARCH .. 22
--alt-group / ALT_GROUP.. 22
--alt-group-file / ALT_GROUP_FILE .. 22
--alt-group-search / ALT_GROUP_SEARCH ... 22
--alt-source / ALT_SOURCE .. 22
--alt-source-file / ALT_SOURCE_FILE .. 22

Positional Matching Options .. 22
--region-position-margin / REGION_POSITION_MARGIN ... 22
--region-match-percent / REGION_MATCH_PERCENT ... 22
--region-match-bases / REGION_MATCH_BASES ... 23

Model Building Options ... 23
--maximum-model-count / MAXIMUM_MODEL_COUNT ... 23
--alternate-model-filtering / ALTERNATE_MODEL_FILTERING ... 23
--all-pairwise-models / ALL_PAIRWISE_MODELS ... 23
--maximum-model-group-size / MAXIMUM_MODEL_GROUP_SIZE .. 23
--minimum-model-score / MINIMUM_MODEL_SCORE ... 23
--sort-models / SORT_MODELS .. 23

Output Options .. 24
--quiet / QUIET .. 24
--verbose / VERBOSE .. 24
--prefix / PREFIX ... 24
--overwrite / OVERWRITE ... 24
--stdout / STDOUT ... 24
--report-invalid-input / REPORT_INVALID_INPUT ... 24
--filter / FILTER ... 24
--annotate / ANNOTATE .. 24
--model / MODEL .. 24

Input File Formats ... 25
Configuration Files ... 25
SNP List Input Files.. 26
Position Data Input Files ... 26
Region Data Input Files .. 27

 4

Gene and Group List Input Files ... 27
Source List Input Files .. 28

Output File Formats .. 29
Configuration Report .. 29
Gene and Group Name Statistics Reports ... 29
LD Profiles Report .. 30
Invalid Input Reports .. 30
Analysis Outputs ... 30

Example Knowledge .. 33

Example Commands .. 35
Filtering Examples ... 35

Example 1: Filtering a list of SNPs by a genotyping platform, where input1 is the first list of SNPs and
input2 is the list of SNPs on the genotyping platform. .. 35
Example 2: Output a list of SNPs from a genotyping platform that correspond to a list of genes. 36
Example 3: Input a list of groups, output regions within those groups. ... 37
Example 4: Output a list of all genes within a data source. .. 37
Example 5: Start with a list of genes, output all the genes within particular groups. ... 38
Example 6: Start with genes associated with a pathway or group, output genes within that group that
overlap with an input list of genes. .. 39
Example 7: Starting with a list of genes, determine genes are within a group. .. 39

Annotation Examples .. 39
Example 1: Annotating a SNP with gene region information. ... 39
Example 2: Annotating SNPs with location information. .. 40
Example 3: Map a SNP to the groups and sources where the SNP is present. .. 41
Example 4: Annotating a base pair region with the list of SNPs in that region. ... 41

Example Filtering followed by annotation ... 42
Example 1: Input a SNP list and map SNP positions to regions. ... 42
Example 2: Map SNPs to groups and filter on the source. ... 42
Example 3: Testing overlap of SNP and region lists, outputting regions. ... 43
Example 4: Testing overlap of gene and source lists, outputting regions. ... 43
Example 5: Filter gene list based on sources, and output regions. .. 44
Example 6: Output of genes found in pathway based input, filtered by genotyping platform. 44
Example 7: Output of genes annotated by group found in pathway based input, filtered by genotyping
platform. ... 45
Example 8: Genes within data sources from a list of input genes filtered by genotyping platform, output
regions. .. 45
Example 9: Find overlap between two SNP lists and map the overlapping SNPs to the genes. 46
Example 10: Find overlapping SNPs between the two lists and map the overlapping SNPs to the genes,
regions, groups and the sources. ... 46
Example 11: Mapping regions to genes using Biofilter based on percent of overlap. .. 47
Example 12: Mapping regions to genes using Biofilter based on base pair overlap. .. 48
Example 13: Annotating a list of gene symbols with SNPs, regions, groups, and sources, using Biofilter. 48

Modeling Example .. 49
Step 1 .. 50
Step 2 .. 50
Step 3 .. 51
Changes in Biofilter 2.0 Modeling ... 52

Appendix 1: Ambiguity in Prior Knowledge .. 53
Ambiguity Reduction Heuristics .. 54
Ambiguity Options ... 54

 5

Gene Ambiguity Examples .. 54
Example 1: cyan .. 54
Example 2: magenta ... 55
Example 3: yellow ... 55
Example 4: gray/black ... 55

Protein Identifiers .. 56
Protein Ambiguity Examples ... 57

Example 1: orange ... 57
Example 2: indigo ... 57
Example 3: violet... 57

Appendix 2: LD Profiles ... 58
Installing LD Spline .. 58
Generating LD Profiles ... 58

Population Build Script Options .. 59

 6

Introduction

What is Biofilter?

Biofilter is a software tool that provides a convenient single interface for accessing multiple publicly

available human genetic data sources. These sources include information about the genomic locations

of SNPs and genes, as well as relationships among genes and proteins such as interaction pairs,

pathways and ontological categories. Biofilter will cross-reference all of this prior biological

knowledge in several different ways, with any number of combinations of input data.

Why use Biofilter?

While genome-wide association studies (GWAS) have been used to identify genetic variants that

contribute to disease susceptibility on a single-variant single-phenotype level, other approaches can be

used to investigate the association between genetic and phenotypic variation. Use of the software tool

Biofilter is one such example of a complementary but alternate approach. Biofilter allows users to

work with a range of types and formats of data, including SNPs, copy number variant (CNV), and gene

location information, along with a repository of diverse biological knowledge distilled from multiple

external databases. Via Biofilter, users can annotate data or results with relevant biological knowledge

for analysis and interpretation. Biofilter also allows users to filter data based on biological criteria,

allowing users to harness information from multiple sources for the reduction of data for analysis.

Finally, Biofilter can be used to generate biological-information derived pairwise interaction models

for reducing the computational and statistical burden of large-scale interaction data analysis, while also

providing a biological foundation to support the relevance of statistically significant results. The use of

Biofilter may help to elucidate a new picture of the relationship between genetic architecture and

complex phenotypic outcomes such as the presence or absence of disease.

Library of Knowledge Integration (LOKI)

Rather than issuing queries in real-time to a series of external databases, Biofilter consults a local

database called the Library of Knowledge Integration, or LOKI. This local repository contains all the

knowledge from bulk downloads of the raw data from each external source.

LOKI must be generated on the local

system before Biofilter can be used,

but because the resulting knowledge

database is a single local file, Biofilter

itself does not require an internet

connection to run. The process of

building LOKI requires a relatively

large amount of time and disk space to

complete, but only needs to be done

occasionally to incorporate updated

data files from the various sources.

 7

Knowledge Sources

Source URL Summary

BioGRID http://thebiogrid.org BioGRID is a repository with genetic and protein interaction data

from model organisms and humans used by Biofilter for linking

position and region data to interaction information.

NCBI dbSNP http://www.ncbi.nlm.nih.gov

/snp
A database of SNPs and multiple small-scale variations including

insertions, deletions, microsatellites and non-polymorphic

variants. This resource includes a complete list of known human

SNPs and their base pair positions relative to the human

reference genome. Biofilter uses the data of dbSNP in two ways:

connecting SNP identifiers (RS numbers) of dbSNP to genomic

positions and connecting retired identifiers to current identifiers.

NCBI Gene http://www.ncbi.nlm.nih.gov

/gene
Entrez is a search engine that allows users to search many

discrete health sciences databases at the NCBI. The database

provides an extensive list of known human genes, their beginning

and ending base pair positions, and many alternate names and

cross-referenced database identifiers. This data is used to connect

gene symbols to their genomic regions, and to connect equivalent

gene symbols and identifiers to each other.

Gene

Ontology

http://www.geneontology.org The Gene Ontology database defines terms representing gene

product properties, such as cellular components, molecular

function, and biological processes, within a hierarchical tree of

ontology groups and related proteins.

NHGRI

GWAS

Catalog

http://www.genome.g

ov

/gwastudies

The NHGRI GWAS Catalog provides associations between SNPs

and various phenotypes which were discovered via genome-wide

association studies (GWAS).

MINT http://mint.bio.uniroma2.it

/mint/Welcome.do
The Molecular Interaction database contains experimentally

verified protein-protein interactions from the scientific literature,

which are used in Biofilter for linking position and region data to

interacting protein pairs.

NetPath http://www.netpath.org The NetPath database consists of curated human signaling

pathways which are used by Biofilter.

OregAnno http://www.oreganno.org

/oregano
The Open REGulatory ANNOtation database is used by Biofilter

for curation information about known regulatory elements from

the scientific literature.

Pfam http://pfam.sanger.ac.uk The Pfam database is a large collection of protein families. The

annotation of data respective to proteins within Biofilter is based

on the information from Pfam.

PharmGKB http://www.pharmgkb.org Biofilture currently uses this database for pathway based data,

future releases of Biofilter will also include gene-drug

associations and pharmacological association study results.

Reactome http://www.reactome.org

/ReactomeGWT/entrypoint.html
Biofilter uses the information contained in Reactome to establish

pathway and network relationships between genes.

UCSC

genome

browser

http://genome.ucsc.edu This source provides access to a growing database of genomic

sequence and annotations for a wide variety of organisms,

currently we use the UCSC for location information for

evolutionary conserved regions (ECRs) for Biofilter and to acess

OregAnno’s regulatory region data.

 8

Data Types

Biofilter can work with and understand the relationships between six basic types of data:

SNP

Specified by an RS number, i.e. “rs1234”.

Used to refer to a known and documented SNP whose position can be retrieved

from the knowledge database.

Position

Specified by a chromosome and basepair location, i.e. “chr1:234”.

Used to refer to any single genomic location, such as a single nucleotide

polymorphism (SNP), single nucleotide variation (SNV), rare variant, or any other

position of interest.

Region

Specified by a chromosome and basepair range, i.e. “chr1:234-567”.

Used to refer to any genomic region, such as a copy number variation (CNV),

insertion/deletion (indel), gene coding region, evolutionarily conserved region

(ECR), functional region, regulatory region, or any other region of interest.

Gene

Specified by a name or other identifier, i.e. “A1BG” or “ENSG00000121410”.

Used to refer to a known and documented gene, whose genomic region and

associations with any pathways, interactions or other groups can be retrieved from

the knowledge database.

Group

Specified by a name or other identifier, i.e. “lipid metabolic process” or

“GO:0006629”.

Used to refer to a known and documented pathway, ontological group, protein

interaction, protein family, or any other grouping of genes, proteins or genomic

regions that was provided by one of the external data sources.

Source
 Specified by name, i.e. “GO”.

Used to refer to a specific external data source.

Some of these data types are closely related, but behave in slightly different ways. For example a SNP

and a position may be interchangeable in most cases, but not always: some RS numbers have no

known genomic position while some have more than one, and any given genomic position could be

associated with more than one RS number, or none at all. Similarly, some genes have no confirmed

genomic region while some have several, and a given region might overlap or contain one gene, or

many, or none.

The order in which these types have been listed is also significant: it is the sequence in which data can

be cross-referenced within Biofilter. For example, a SNP (or RS number) and a gene have no direct

relationship, but a SNP may have a known genomic position (or several), and that position may lie

within a known region which is associated with a particular gene. To complete the chain, a gene may

be associated with one or more groups of various types (interactions, pathways, etc.), and each of those

groups was provided from a particular external data source.

 9

Analysis Modes

Biofilter has three primary analysis modes which each make use of the available biological knowledge

in slightly different ways.

Filtering

The most straightforward of Biofilter’s primary functions is, as the name implies, filtering. Given any

combination of input data, Biofilter can cross-reference the input data using the relationships stored in

the knowledge database to generate a filtered dataset of any supported type (or types).

For example, a user can provide a list of SNPs (such as those covered by a genotyping platform) and a

list of genes (such as those thought to be related to a particular phenotype) and request a filtered set of

SNPs. Biofilter will use LOKI’s knowledge of SNP positions and gene regions to filter the provided

SNP list, removing all those that are not located within any of the provided genes.

The output data type does not necessarily have to be the same data type(s) provided as input. For

example, a user can provide a list of SNPs and a list of groups and request the set of genes that match

both lists. In this case, there is no input set of genes to use as a starting point so Biofilter will check all

known genes found in the knowledge database. The result is a list of only the genes which include at

least one of the specified SNPs, and are a part of at least one of the specified groups.

Finally, filtering is not limited to a single data type: Biofilter can also identify all of the unique

combinations of data types which jointly meet the provided criteria. For example, given a list of SNPs

and genes, Biofilter can produce a filtered set of SNP-gene pairs. The result is every combination of

SNP and gene from the two lists where the SNP is within the gene.

Annotation

Biofilter can also annotate any of the supported data types with respect to any of the others. Like

filtering, the annotations are based on the relationships stored in the knowledge database; unlike

filtering, any data which cannot be annotated as requested (such as a SNP which is not located within

any gene) will still be included in the output, with the annotation columns of the output simply left

blank. Put another way, the difference between filtering and annotation is that filtering does not allow

any blanks.

For example, a list of SNPs can be annotated with positions to generate a new list of all the same

SNPs, but with extra columns containing the chromosome and genomic position for each SNP (if any).

Any SNP with multiple known positions will be repeated, and any SNP with no known position will

have blanks in the added columns.

Similarly, those same SNPs can be annotated with gene information; the result is similar, except that

the added column contains the name of the gene containing the SNP’s position. In this case a blank

value can mean two things: either the SNP does not fall within any known gene region, or the SNP has

no known position with which to search for gene regions.

 10

Annotations can also be generated for combinations of data types, or for data types which were not

provided as input. In these cases the annotation will be for the output of a filtering analysis. For

example, suppose the user provides a list of SNPs and a list of groups, and then requests an annotation

of genes to regions. Since no genes were provided as input, Biofilter will first perform a filtering

analysis to identify all genes which contain at least one of the provided SNPs, and are also part of at

least one of the provided groups. This filtered set of genes will then appear in the first column of the

annotation output, followed by each gene’s genomic region (if any).

Modeling

The last of Biofilter’s primary analysis modes is a little different from filtering and annotation. In

addition to simply cross-referencing any given data with the other available prior knowledge, Biofilter

can also search for repeated patterns within the prior knowledge which might indicate the potential for

important interactions between SNPs or genes.

The key idea behind this analysis is that any pathway, ontological category, protein family,

experimental interaction, or other grouping of genes or proteins implies a relationship between each of

those genes or proteins. If the same two genes appear together in more than one grouping, they’re

likely to have an important biological relationship; if they appear in multiple groups from several

independent sources, then they’re even more likely to be biologically related in some way. Biofilter has

access to thousands of such groupings and can analyze all of them to identify the pairs of genes or

SNPs appearing together in the greatest number of groupings and the widest array of original data

sources. These pairs can then be tested for significance within a research dataset, avoiding the

prohibitive computational and multiple-testing burden of an exhaustive pairwise analysis.

Biofilter can take any combination of input data and use it to focus the search for likely pairwise

interaction models. For example, a user can provide a list of SNPs and request gene-gene models;

Biofilter will then only consider models in which both genes contain at least one of the specified SNPs.

The models suggested by Biofilter are also ranked in order of likelihood, using an “implication index.”

This score is simply a combination of two tallies: the number of original data sources which contained

the pair, and the number of different groups among those sources. For example a score of “2-3”

indicates that the model appears in three different groups, and those groups originated with two

different sources.

Since the interaction models are based on genes appearing together in multiple groups, Biofilter

performs all model-building analyses by first generating gene-gene models. These baseline models can

then be converted into models of any type by expanding each side independently, just like in a filtering

analysis. For example if the user requests SNP models, Biofilter will take each baseline gene-gene

model, separately map the two genes to all applicable SNPs, and then return all possible pairings

between those two sets of SNPs.

Primary and Alternate Input Datasets

So far, the descriptions and examples of Biofilter’s various analysis modes have implied that all user

input exists in a single dataset. However, Biofilter can support two independent sets of user input data.

These two datasets are used for slightly different things depending on the context, and so whenever

 11

input data is provided to Biofilter, the user must specify which dataset it should be added to. For this

purpose there are corresponding primary and alternate input options for each type of data: “SNP” and

“ALT_SNP”, “REGION” and “ALT_REGION”, and so on.

In a filtering analysis, only the primary input dataset is used; any alternate input data has no effect.

In an annotation analysis, the primary and alternate input datasets are used separately on the two sides

of the annotation. For example, if a user annotates SNPs with genes then the primary input data is used

to limit which SNPs are annotated at all, while the alternate input data is used to limit which genes can

be considered for annotation. Put another way, this means that if a SNP cannot be linked with the

primary input data then it will not appear at all in the annotation output (even with blank annotation

columns); likewise if a gene cannot be linked with the alternate input data then it will not appear as an

annotation for any SNP, even if its genomic region does contain the SNP’s position.

In a modeling analysis, the primary and alternate input datasets are used similarly to annotation, with

one extra option. By default, both parts of a model must match the primary input data in order for that

model to be generated. If there is any alternate input data, then one of the two parts of the model must

also match the alternate input. For example, the user could provide SNP list A as primary input and

SNP list B as alternate input, and then request SNP models. Biofilter would then only generate SNP-

SNP models in which both SNPs appear in list A, and at least one of them also appears in list B. With

the ALTERNATE_MODEL_FILTERING option, the effect of the primary input is relaxed a bit so that

it only applies to one part of the model, while the alternate input applies to the other. In this case,

Biofilter would generate SNP-SNP models where one SNP is in list A and the other SNP is in list B.

Identifiers

Any given gene or group might go by many different names in different contexts, and Biofilter/LOKI

accommodate this. For example, a single gene (let’s say “alpha-1-B glycoprotein”) might have one ID

number assigned by NCBI’s Entrez Gene database (“1”), a different identifier assigned by Ensembl

(“ENSG00000121410”), another one from HGNC (“5”), plus any number of symbolic abbreviations

(A1BG, A1B, ABG, GAB, HYST2477).

Just as a single gene can have more than one name, there are also names which are known to be

associated with more than one gene; these names are considered ambiguous. For example, although

A1B is an alias of the gene A1BG, it is also an alias of the gene SNTB1 (syntrophin, beta 1). Therefore

if A1B appears in an input gene list file, Biofilter will not inherently recognize which gene the user

intended to include. Likewise if A1B were to appear within the bulk biological data downloaded for

LOKI, then Biofilter might not recognize which gene is actually part of some pathway.

Rather than attempting to compromise on a “one size fits all” approach to this ambiguity, Biofilter and

LOKI support multiple interpretations of any ambiguity that was encountered while compiling the

knowledge database. Each of these interpretations comes with a slightly different trade-off between

false-positives and false-negatives, and the interpretation most appropriate to the task can be selected

by the user at run-time. This is covered in greater detail in a later section, but it is important to bear in

mind that ambiguity will be a part of relating and cross-referencing data across multiple independent

sources. Biofilter’s results can change depending on the users choice for handling ambiguity.

 12

Installation & Setup

Prerequisites

The following prerequisites are required to compile the LOKI database and run Biofilter:

 Python, version 2.7 or later

 Python module “apsw” (Another Python SQLite Wrapper)

 SQLite, version 3.6 or later

Note that the dependency on SQLite may be satisfied via the “apsw” Python module, since it often

comes with an embedded copy of the necessary SQLite functionality. However, if LD Spline will be

used (see below) then the SQLite development files will also be required, and these are not packaged

with “apsw”. In either case, if in doubt, consult your system administrator.

Platforms

Biofilter was developed in Python, and should therefore run on Linux, Mac OS X or Windows.

Installing Biofilter

Biofilter can be downloaded from www.ritchielab.psu.edu. To install it onto your system, simply use

Python to run the included “setup.py” script with the “install” option:

python setup.py install

This will place the Biofilter and LOKI files in your system’s usual place for Python-based software,

which is typically alongside Python itself. The installation can also be done in a different location by

using the “--prefix” or “--exec-prefix” options. If you wish to use LD profiles, add the “--ldprofile”

option in order to compile and install ldspline (see Appendix 2).

Compiling Prior Knowledge

The LOKI prior knowledge database must be generated before Biofilter can be used. This is done with

the “loki-build.py” script which was installed along with Biofilter. There are several options for this

utility which are detailed below, but to get started, you just need “--knowledge” and “--update”:

loki-build.py --verbose --knowledge loki.db --update

This will download and process the bulk data files from all supported knowledge sources, storing the

result in the file “loki.db” (which we recommend naming after the current date, such as “loki-

20140521.db”). The update process may take as few as 4 hours or as many as 24 depending on the

speed of your internet connection, processor and filesystem, and requires up to 30 GB of free disk

space: 10-20 GB of temporary storage (“C:\TEMP” on Windows, “/tmp” on Linux, etc) plus another 5-

10 GB for the final knowledge database file.

http://www.ritchielab.psu.edu/

 13

By default, the LOKI build script will delete all sources’ bulk data downloads after they have been

processed. If the knowledge database will be updated frequently, it is recommended to keep these bulk

files available so that any unchanged files will not need to be downloaded again. This can be

accomplished with the “--archive” option.

LOKI Build Script Options

--help

Displays the program usage and immediately exits.

--version

Displays the software versions and immediately exits. Note that LOKI is built upon SQLite, which will

also report its own software versions.

--knowledge Argument: <file> Default: none

Specifies the prior knowledge database file to use.

--archive Argument: <file> Default: none

Shorthand for specifying the same file as both the “--from-archive” and “--to-archive”.

--from-archive Argument: <file> Default: none

An archive of downloaded bulk data from a previous run of the LOKI build script. The bulk data files

available for download from each source will be compared against those found in the archive, and only

files which have changed will be downloaded. If not specified, the script will start from scratch and

download everything.

--to-archive Argument: <file> Default: none

A file in which to archive the downloaded bulk data for a later run of the LOKI build script. If not

specified, the script will reclaim disk space by deleting all original data after processing it.

--temp-directory Argument: <directory> Default: platform-dependent

The directory in which to unpack the “--from-archive” (if any) and then download new bulk data. If

not specified, the system’s default temporary directory is used.

--list-sources Arguments: [source] […] Default: none

List the specified source module loaders’ software versions and any options they accept. If no sources

are specified, all available modules are listed.

--cache-only Argument: none

Causes the build script to skip checking any knowledge sources for available bulk data downloads,

allowing it to function without an internet connection. Instead, only the files already available in the

provided “--from-archive” file will be processed. If any source loader module is unable to find an

expected file (such as if no archive was provided), that source loader will fail and no data will be

updated for that source.

 14

--update Arguments: [source] […] Default: all

Instructs the build script to process the bulk data from the specified sources and update their

representation in the knowledge database. If no sources are specified, all supported sources will be

updated.

--update-except Arguments: [source] […] Default: none

Similar to “--update” but with the opposite meaning for the specified sources: all supported sources

will be updated except for the ones specified. If no sources are specified, none are excluded, and all

supported sources are updated.

--option Arguments: <source> <options> Default: none

Passes additional options to the specified source loader module. The options string must be of the form

“option1=value,option2=value” for any number of options and values. Supported options and values

for each source can be shown with “--list-sources”.

--finalize Argument: none

Causes the build script to discard all intermediate data and optimize the knowledge database (after

performing an “--update”, if any). This reduces the knowledge database file size and greatly improves

its performance, however it will no longer be possible to update the file with any new source data.

--verbose Argument: none

Prints additional informational messages to the screen.

--test-data Argument: none

Switches the build script into test mode, in which it uses an alternate set of source loader modules.

These sources do not contain actual biological knowledge; instead, they specify a minimal simulated

set of knowledge which can be easily visualized and used to test and understand the functionality of

LOKI and Biofilter. Knowledge database files created in test mode cannot be updated in the standard

mode, and vice versa. Refer to the Example Knowledge section for more information.

Updating & Archiving Prior Knowledge

It is important to note that the various data sources integrated into LOKI can publish updated data at

any time, according to their own schedules. This new data will not be available to Biofilter until the

LOKI prior knowledge database is updated or regenerated. We recommend that users become familiar

with how often the data sources are updated and plan to update LOKI accordingly, preferably at least

once every few months.

If a given set of analyses need to be repeatable or verifiable, such as those published in a manuscript,

we recommend storing an archived version of the LOKI knowledge database from the time of the

analyses. These archived versions of the database can then be used to repeat or augment an analysis

based on exactly the same prior knowledge, regardless of any updates that may have occurred in

various data sources afterwards. For this purpose it may be useful to include the date in the filename of

each newly compiled version of LOKI in order to carefully distinguish between older versions.

 15

LD Profiles

Biofilter and LOKI allow for gene regions to be adjusted by the linkage disequilibrium (LD) patterns

in a given population. When comparing a known gene region to any other region or position (such as

CNVs or SNPs), areas in high LD with a gene can be considered part of the gene, even if the region

lies outside of the gene’s canonical boundaries.

LD profiles can be generated using LD Spline, a separate software tool bundled with Biofilter. For

more information about LD Spline, please visit the www.ritchielab.psu.edu website; for details on

generating and using LD profiles, see Appendix 2.

http://www.ritchielab.psu.edu/

 16

Using Biofilter

Biofilter can be run from a command-line terminal by executing “biofilter.py” (or “python

biofilter.py”) and specifying the desired inputs, outputs and other optional settings. All options can

either be provided directly on the command line (such as “biofilter.py --option-name”) or placed in one

or more configuration files whose filenames are then provided on the command line (such as

“biofilter.py analysis.config”). The former approach may be more convenient for setting up the

necessary options to achieve the desired analysis, but the latter approach is recommended for any final

runs, since the configuration file then serves as a record of exactly what was done. Any number of

configuration files may be used, with options from later files overriding those from earlier files.

Options on the command line override those from any configuration file.

The available options are the same no matter where they appear, but are formatted differently. Options

on the command line are lower-case, start with two dashes and may contain single dashes to separate

words (such as “--snp-file”), while in a configuration file the same option would be in upper-case,

contain no dashes and instead use underscores to separate words (i.e. “SNP_FILE”). Many command

line options also have alternative shorthand versions of one or a few letters, such as “-s” for

“--snp-file” and “--aag” for “--allow-ambiguous-genes”.

All options are listed here in both their command line and configuration file forms. If an option allows

or requires any further arguments, they are also noted along with their default values, if any.

Arguments which are required are enclosed in <angle brackets>, while arguments which are optional

are enclosed in [square brackets].

Many options have only two possible settings and therefore accept a single argument which can either

be “yes” or “no” (or “on” or “off”, or “1” or “0”). Specifying these options with no argument is always

interpreted as a “yes”, such that for example “VERBOSE yes” and “VERBOSE” have the same

meaning. However, omitting such options entirely may default to either “yes” or “no” depending on

the option.

Configuration Options

--help / HELP

Displays the program usage and immediately exits.

--version / VERSION

Displays the software versions and immediately exits. Note that Biofilter is built upon LOKI and

SQLite, each of which will also report their own software versions.

--report-configuration / REPORT_CONFIGURATION

Argument: [yes/no] Default: no

Generates a Biofilter configuration file which specifies the current effective value of all program

options, including any default options which were not overridden. This file can then be passed back in

to Biofilter again in order to repeat exactly the same analysis.

 17

--report-replication-fingerprint / REPORT_REPLICATION_FINGERPRINT

Argument: [yes/no] Default: no

When used along with REPORT_CONFIGURATION, this adds additional validation options to the

resulting configuration file. These extra options specify all relevant software versions as well as a

fingerprint of the data contained in the knowledge database file. When re-running a configuration file

with these extra replication options, Biofilter will use them to ensure that neither Biofilter itself nor the

LOKI knowledge database file have been updated since the original analysis; this in turn ensures that

the re-run analysis will produce the same (or compatible) results as the original.

Prior Knowledge Options

--knowledge / KNOWLEDGE

 Argument: <file> Default: none

Specifies the LOKI prior knowledge database file to use. If a relative path is provided it will be tried

first from the current working directory, and then from the location of the Biofilter executable itself.

--report-genome-build / REPORT_GENOME_BUILD

 Argument: [yes/no] Default: no

Displays the build version(s) of the human reference genome which was used as the basis for all

genomic positions in the prior knowledge database (such as for SNP positions and gene regions). Any

position or region data provided as input must be converted to the same build version in order to match

correctly with the prior knowledge.

--report-gene-name-stats / REPORT_GENE_NAME_STATS

 Argument: [yes/no] Default: no

Generates a report of the gene identifier types available in the knowledge database.

--report-group-name-stats / REPORT_GROUP_NAME_STATS

 Argument: [yes/no] Default: no

Generates a report of the group identifier types available in the knowledge database.

--allow-unvalidated-snp-positions / ALLOW_UNVALIDATED_SNP_POSITIONS

 Argument: [yes/no] Default: yes

Allows Biofilter to make use of all SNP-position mappings available in the knowledge database, even

ones which the original data source identified as un-validated. When disabled, only validated positions

are considered.

--allow-ambiguous-knowledge / ALLOW_AMBIGUOUS_KNOWLEDGE

 Argument: [yes/no] Default: no

Allows Biofilter to make use of all potential gene-group mappings in the knowledge database, even if

the gene was referred to with an ambiguous identifier. This will likely include some false-positive

associations, but the alternative is likely to miss some true associations.

--reduce-ambiguous-knowledge / REDUCE_AMBIGUOUS_KNOWLEDGE

 Argument: [no/implication/quality/any] Default: no

Enables a heuristic algorithm to attempt to resolve ambiguous gene-group mappings in the knowledge

database. Providing this option with no argument is the same as using ‘any’, which applies all heuristic

algorithms at once.

 18

--report-ld-profiles / REPORT_LD_PROFILES

 Argument: [yes/no] Default: no

Generates a report of the LD profiles available in the knowledge database. See Appendix 1 for details

on generating LD profiles using LD Spline.

--ld-profile / LD_PROFILE

 Argument: [ldprofile] Default: none

Specifies an alternate set of gene region boundaries which were pre-calculated by LD Spline to

account for a population-specific linkage disequilibrium profile. When omitted or supplied with no

argument, the default profile (containing the original unmodified gene boundaries) is used.

--verify-biofilter-version / VERIFY_BIOFILTER_VERSION

 Argument: <version> Default: none

Ensure that the current version of Biofilter is the same as the one specified. This option is added

automatically to configuration files generated with REPORT_REPLICATION_FINGERPRINT.

--verify-loki-version / VERIFY_LOKI_VERSION

 Argument: <version> Default: none

Ensure that the current version of LOKI is the same as the one specified. This option is added

automatically to configuration files generated with REPORT_REPLICATION_FINGERPRINT.

--verify-source-loader / VERIFY_SOURCE_LOADER

 Arguments: <source> <version> Default: none

Ensure that the knowledge database file was generated with the specified version of a source data

loader module. Can be used multiple times to specify versions for different sources. This option is

added automatically to configuration files generated with REPORT_REPLICATION_FINGERPRINT.

--verify-source-option / VERIFY_SOURCE_OPTION

 Arguments: <source> <option> <value> Default: none

Ensure that the knowledge database file was generated with the specified option value supplied to a

source data loader module. Can be used multiple times to specify different options, or options for

different sources. This option is added automatically to configuration files generated with

REPORT_REPLICATION_FINGERPRINT.

--verify-source-file / VERIFY_SOURCE_FILE

 Arguments: <source> <file> <date> <size> <md5> Default: none

Ensure that the knowledge database file was generated with the specified source data file. Can be used

multiple times to specify different files, or files for different sources. This option is added

automatically to configuration files generated with REPORT_REPLICATION_FINGERPRINT.

Primary Input Data Options

--snp / SNP

 Arguments: <snp> [snp] […] Default: none

Adds (or intersects) the specified set of SNPs to (or with) the primary input dataset. SNPs must be

provided as integer RS numbers with an optional “rs” prefix.

 19

--snp-file / SNP_FILE

 Arguments: <file> [file] […] Default: none

Adds (or intersects) the set of SNPs read from the specified files to (or with) the primary input dataset.

Files must contain a single column formatted as in the SNP option.

--position / POSITION

 Arguments: <position> [position] […] Default: none

Adds (or intersects) the specified set of positions to (or with) the primary input dataset. Positions must

be provided as 2 to 4 fields separated by colons: “chr:pos”, “chr:label:pos” or “chr:label:ignored:pos”.

Chromosomes may have an optional “chr” prefix.

--position-file / POSITION_FILE

 Arguments: <file> [file] […] Default: none

Adds (or intersects) the set of positions read from the specified files to (or with) the primary input

dataset. Files must contain 2 to 4 columns formatted as in the POSITION option, but separated by tabs

instead of colons.

--region / REGION

 Arguments: <region> [region] […] Default: none

Adds (or intersects) the specified set of regions to (or with) the primary input dataset. Regions must be

provided as 3 or 4 fields separated by colons: “chr:start:stop” or “chr:label:start:stop”. Chromosomes

may have an optional “chr” prefix.

--region-file / REGION_FILE

 Arguments: <file> [file] […] Default: none

Adds (or intersects) the set of regions read from the specified files to (or with) the primary input

dataset. Files must contain 3 or 4 columns formatted as in the REGION option, but separated by tabs

instead of colons.

--gene / GENE

 Arguments: <gene> [gene] […] Default: none

Adds (or intersects) the specified set of genes to (or with) the primary input dataset. The specified

genes will be interpreted according to the GENE_IDENTIFIER_TYPE option.

--gene-file / GENE_FILE

 Arguments: <file> [file] […] Default: none

Adds (or intersects) the set of genes read from the specified files to (or with) the primary input dataset.

Files must contain 1 or 2 columns separated by tabs. For 1-column files, genes are interpreted

according to the GENE_IDENTIFIER_TYPE option. For 2-column files, the first column specifies the

gene identifier type by which the second column will be interpreted.

--gene-identifier-type / GENE_IDENTIFIER_TYPE

 Argument: [type] Default: -

Specifies the identifier type with which to interpret all input gene identifiers. If no type or an empty

type is provided, all possible types are tried for each identifier. If the special type “-“ is provided (the

default), identifiers are interpreted as primary gene labels.

 20

--allow-ambiguous-genes / ALLOW_AMBIGUOUS_GENES

 Argument: [yes/no] Default: no

When enabled, any input gene identifier which matches multiple genes will be interpreted as if all of

those genes had been specified. When disabled (the default), ambiguous gene identifiers are ignored.

--gene-search / GENE_SEARCH

 Argument: text Default: none

Adds (or intersects) the matching set of genes to (or with) the primary input dataset. Matching genes

are identified by searching for the provided text in all labels, descriptions and identifiers associated

with each known gene.

--group / GROUP

 Arguments: <group> [group] […] Default: none

Adds (or intersects) the specified set of groups to (or with) the primary input dataset. The specified

groups will be interpreted according to the GROUP_IDENTIFIER_TYPE option.

--group-file / GROUP_FILE

 Arguments: <file> [file] […] Default: none

Adds (or intersects) the set of groups read from the specified files to (or with) the primary input

dataset. Files must contain 1 or 2 columns separated by tabs. For 1-column files, genes are interpreted

according to the GENE_IDENTIFIER_TYPE option. For 2-column files, the first column specifies the

gene identifier type by which the second column will be interpreted.

--group-identifier-type / GROUP_IDENTIFIER_TYPE

 Argument: [type] Default: -

Specifies the identifier type with which to interpret all input group identifiers. If no type or an empty

type is provided, all possible types are tried for each identifier. If the special type “-“ is provided (the

default), identifiers are interpreted as primary group labels.

--allow-ambiguous-groups / ALLOW_AMBIGUOUS_GROUPS

 Argument: [yes/no] Default: no

When enabled, any input group identifier which matches multiple groups will be interpreted as if all of

those groups had been specified. When disabled (the default), ambiguous group identifiers are ignored.

--group-search / GROUP_SEARCH

 Argument: text Default: none

Adds (or intersects) the matching set of groups to (or with) the primary input dataset. Matching groups

are identified by searching for the provided text in all labels, descriptions and identifiers associated

with each known group.

--source / SOURCE

 Arguments: <source> [source] […] Default: none

Adds (or intersects) the specified set of sources to (or with) the primary input dataset.

--source-file / SOURCE_FILE

 Arguments: <file> [file] […] Default: none

Adds (or intersects) the set of sources read from the specified files to (or with) the primary input

dataset.

 21

Alternate Input Data Options

--alt-snp / ALT_SNP

 Arguments: <snp> [snp] […] Default: none

Adds (or intersects) the specified set of SNPs to (or with) the alternate input dataset. SNPs must be

provided as integer RS numbers with an optional “rs” prefix.

--alt-snp-file / ALT_SNP_FILE

 Arguments: <file> [file] […] Default: none

Adds (or intersects) the set of SNPs read from the specified files to (or with) the alternate input dataset.

Files must contain a single column formatted as in the SNP option.

--alt-position / ALT_POSITION

 Arguments: <position> [position] […] Default: none

Adds (or intersects) the specified set of positions to (or with) the alternate input dataset. Positions must

be provided as 2 to 4 fields separated by colons: “chr:pos”, “chr:label:pos” or “chr:label:ignored:pos”.

Chromosomes may have an optional “chr” prefix.

--alt-position-file / ALT_POSITION_FILE

 Arguments: <file> [file] […] Default: none

Adds (or intersects) the set of positions read from the specified files to (or with) the alternate input

dataset. Files must contain 2 to 4 columns formatted as in the POSITION option, but separated by tabs

instead of colons.

--alt-region / ALT_REGION

 Arguments: <region> [region] […] Default: none

Adds (or intersects) the specified set of regions to (or with) the alternate input dataset. Regions must be

provided as 3 or 4 fields separated by colons: “chr:start:stop” or “chr:label:start:stop”. Chromosomes

may have an optional “chr” prefix.

--alt-region-file / ALT_REGION_FILE

 Arguments: <file> [file] […] Default: none

Adds (or intersects) the set of regions read from the specified files to (or with) the alternate input

dataset. Files must contain 3 or 4 columns formatted as in the REGION option, but separated by tabs

instead of colons.

--alt-gene / ALT_GENE

 Arguments: <gene> [gene] […] Default: none

Adds (or intersects) the specified set of genes to (or with) the alternate input dataset. The specified

genes will be interpreted according to the GENE_IDENTIFIER_TYPE option.

--alt-gene-file / ALT_GENE_FILE

 Arguments: <file> [file] […] Default: none

Adds (or intersects) the set of genes read from the specified files to (or with) the alternate input dataset.

Files must contain 1 or 2 columns separated by tabs. For 1-column files, genes are interpreted

according to the GENE_IDENTIFIER_TYPE option. For 2-column files, the first column specifies the

gene identifier type by which the second column will be interpreted.

 22

--alt-gene-search / ALT_GENE_SEARCH

 Argument: text Default: none

Adds (or intersects) the matching set of genes to (or with) the alternate input dataset. Matching genes

are identified by searching for the provided text in all labels, descriptions and identifiers associated

with each known gene.

--alt-group / ALT_GROUP

 Arguments: <group> [group] […] Default: none

Adds (or intersects) the specified set of groups to (or with) the alternate input dataset. The specified

groups will be interpreted according to the GROUP_IDENTIFIER_TYPE option.

--alt-group-file / ALT_GROUP_FILE

 Arguments: <file> [file] […] Default: none

Adds (or intersects) the set of groups read from the specified files to (or with) the alternate input

dataset. Files must contain 1 or 2 columns separated by tabs. For 1-column files, genes are interpreted

according to the GENE_IDENTIFIER_TYPE option. For 2-column files, the first column specifies the

gene identifier type by which the second column will be interpreted.

--alt-group-search / ALT_GROUP_SEARCH

 Argument: text Default: none

Adds (or intersects) the matching set of groups to (or with) the alternate input dataset. Matching groups

are identified by searching for the provided text in all labels, descriptions and identifiers associated

with each known group.

--alt-source / ALT_SOURCE

 Arguments: <source> [source] […] Default: none

Adds (or intersects) the specified set of sources to (or with) the alternate input dataset.

--alt-source-file / ALT_SOURCE_FILE

 Arguments: <file> [file] […] Default: none

Adds (or intersects) the set of sources read from the specified files to (or with) the alternate input

dataset.

Positional Matching Options

--region-position-margin / REGION_POSITION_MARGIN

 Argument: <bases> Default: 0

Defines an extra margin beyond the boundaries of all genomic regions within which a position will still

be considered a match with the region. With no suffix or a “b” suffix the margin is interpreted as

basepairs; with a “kb” or “mb” suffix it is measured in kilobases or megabases, respectively.

--region-match-percent / REGION_MATCH_PERCENT

 Argument: <percentage> Default: 100

Defines the minimum proportion of overlap between two regions in order to consider them a match.

The percentage is measured in terms of the shorter region, such that 100% overlap always implies one

region equal to or completely contained within the other. When combined with

REGION_MATCH_BASES, both requirements are enforced independently. For this reason, the default

value for REGION_MATCH_PERCENT is ignored if REGION_MATCH_BASES is used alone.

 23

--region-match-bases / REGION_MATCH_BASES

 Argument: <bases> Default: 0

Defines the minimum number of basepairs of overlap between two regions in order to consider them a

match. With no suffix or a “b” suffix the overlap is interpreted as basepairs; with a “kb” or “mb” suffix

it is measured in kilobases or megabases, respectively. When combined with

REGION_MATCH_PERCENT, both requirements are enforced independently.

Model Building Options

--maximum-model-count / MAXIMUM_MODEL_COUNT

 Argument: <count> Default: 0

Limits the number of models that will be generated, in order to reduce processing time. A value of 0

(the default) means no limit.

--alternate-model-filtering / ALTERNATE_MODEL_FILTERING

 Argument: [yes/no] Default: no

When enabled, the primary input dataset is only applied to one side of a generated model, while the

alternate input dataset is applied to the other. When disabled (the default), the primary input dataset

applies to both sides of each model.

--all-pairwise-models / ALL_PAIRWISE_MODELS

 Argument: [yes/no] Default: no

When enabled, model generation results in all possible pairwise combinations of data which conform

to the primary and alternate input datasets. Note that this means the models have no score or ranking,

since the prior knowledge is not searched for patterns. When disabled (the default), models are only

generated which are supported by one or more groupings within the prior knowledge database.

--maximum-model-group-size / MAXIMUM_MODEL_GROUP_SIZE

 Argument: <size> Default: 30

Limits the size of a grouping in the prior knowledge which can be used as part of a model generation

analysis; any group which contains more genes than this limit is ignored for purposes of model

generation. A value of 0 means no limit.

--minimum-model-score / MINIMUM_MODEL_SCORE

 Argument: <score> Default: 2

Sets the minimum source-tally score for generated model; a model must be supported by groups from

at least this many sources in order to be returned.

--sort-models / SORT_MODELS

 Argument: [yes/no] Default: yes

When enabled (the default), models are output in descending order by score. When combined with

MAXIMUM_MODEL_COUNT, this guarantees that only the highest-scoring models are output.

When disabled, models are output in an unpredictable order.

 24

Output Options

--quiet / QUIET

 Argument: [yes/no] Default: no

When enabled, no warnings or informational messages are printed to the screen. However, all

information is still written to the log file, and certain unrecoverable errors are still printed to the screen.

--verbose / VERBOSE

 Argument: [yes/no] Default: no

When enabled, informational messages are printed to the screen in addition to warnings and errors.

--prefix / PREFIX

 Argument: <prefix> Default: “biofilter”

Sets the prefix for all output filenames, which is then combined with a unique suffix for each type of

output. The prefix may contain an absolute or relative path in order to write output to a different

directory.

--overwrite / OVERWRITE

 Argument: [yes/no] Default: no

Allows Biofilter to erase and overwrite any output file which already exists. When disabled (the

default), Biofilter exits with an error to prevent any existing files from being overwritten.

--stdout / STDOUT

 Argument: [yes/no] Default: no

Causes all output data to be written directly to the screen rather than saved to a file. On most platforms

this output can then be sent directly into another program.

--report-invalid-input / REPORT_INVALID_INPUT

 Argument: [yes/no] Default: no

Causes any input data which was not understood by Biofilter to be copied into a separate output report

file. This file also includes comments describing the error with each piece of data.

--filter / FILTER

 Argument: <type> [type] […] Default: none

Perform a filtering analysis which outputs the specified type(s). If a single type is requested, the output

will be in exactly the same format that Biofilter requires as input for that data type; additional types are

simply appended left-to-right in the order requested.

--annotate / ANNOTATE

 Argument: <type> [type] […] [:] <type> [type] […] Default: none

Perform an annotation analysis which outputs the specified type(s). The starting point for the

annotation is the first specified type (or, if a colon is used, the combination of types before the colon);

all additional types are optional and will be left blank if no suitable match can be found.

--model / MODEL

 Argument: <type> [type] […] [:] [type] […] Default: none

Perform a modeling analysis which generates models of the specified type(s). If a colon is used, the

types before and after the colon will appear on the left and right sides of the generated models,

respectively; with no colon, both sides of the models will have the same type(s).

 25

Input File Formats

For all input files in Biofilter, lines beginning with the symbol “#” will be ignored. This is useful for

placing comments within input files that will not be a part of the analysis.

Configuration Files

Any option which can be used on the command line can also be used in a configuration file. Each

option must appear as the first item on a line, and any arguments to that option must be separated by

whitespace (any number of tabs or spaces).

If an argument to an option must itself contain spaces (for example a multi-word gene or group

identifier), the argument may be enclosed with “double quotes” to prevent the additional words in the

argument from being interpreted as a separate arguments. If an argument must itself contain double

quotes, they must be escaped with a backslash, \”like so\”.

There is also one extra option which may only be used in a configuration file: INCLUDE. This option

requires one or more filename arguments and causes Biofilter to read each specified file as an

additional configuration file. Included files are processed in full before any other options in the original

configuration file. For example, if file A includes file B and both files specify the same option, then the

option’s setting or value from file A will always override the one from file B, even if it appears before

the INCLUDE instruction. Included configuration files may also include further files; there is no limit

to this recursion, except that any loops (i.e. A includes B which includes A) will raise an error.

This example configuration file was generated by the REPORT_CONFIGURATION option, with

everything else left at default values:

Biofilter configuration file

generated Thu, 18 Jul 2013 12:00:00

Biofilter version 2.1.0 (2013-07-18)

LOKI version 2.1.0 (2013-07-18)

REPORT_CONFIGURATION yes

REPORT_REPLICATION_FINGERPRINT no

REPORT_GENOME_BUILD no

REPORT_GENE_NAME_STATS no

REPORT_GROUP_NAME_STATS no

ALLOW_UNVALIDATED_SNP_POSITIONS yes

ALLOW_AMBIGUOUS_KNOWLEDGE no

REDUCE_AMBIGUOUS_KNOWLEDGE no

GENE_IDENTIFIER_TYPE -

ALLOW_AMBIGUOUS_GENES no

GROUP_IDENTIFIER_TYPE -

ALLOW_AMBIGUOUS_GROUPS no

REGION_POSITION_MARGIN 0

REGION_MATCH_PERCENT 100.0

REGION_MATCH_BASES 0

 26

MAXIMUM_MODEL_COUNT 0

ALTERNATE_MODEL_FILTERING no

ALL_PAIRWISE_MODELS no

MAXIMUM_MODEL_GROUP_SIZE 30

MINIMUM_MODEL_SCORE 2

SORT_MODELS yes

QUIET no

VERBOSE no

PREFIX biofilter

OVERWRITE no

STDOUT no

REPORT_INVALID_INPUT no

SNP List Input Files

SNP input files only require one column listing the RS number of each SNP, which may optionally

begin with the “rs” prefix. If all inputs and outputs only deal with SNPs, then these RS numbers will

all be used as-is. If any additional columns are included, they will be stored and returned via the

“snp_extra” output column.

If any part of the analysis involves any other data types, however, then the provided RS numbers will

have to be mapped to positions using the prior knowledge database. In this case a single RS number

may correspond to multiple genomic positions, or it may have no known position (at least on the

current genomic reference build). For these reasons it may be preferable to provide positions directly, if

available, rather than relying on SNP identifiers.

Example:

#snp

rs123

456

rs789

extra

first snp

second snp

third snp

Position Data Input Files

The input file format for position data is similar to the MAP file format used in PLINK

(pngu.mgh.harvard.edu/~purcell/plink/data.shtml#map). Up to four primary data columns are allowed,

separated by tab characters:

 Chromosome (1-22, X, Y, MT)

 RS number or other label

 Genetic distance (ignored by Biofilter)

 Base pair position

If all four of these columns are provided, then any additional columns will be stored and returned via

the “position_extra” output column.

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml%23map

 27

Since the genetic distance column is not used by Biofilter, it may be omitted entirely for a three-

column format (equivalent to PLINK’s --map3 option). The label column may also be omitted for a

two-column format including only the chromosome and position; in this case a label of the form

“chr1:2345” will be automatically generated. Note that if the label column is used, it does not

necessarily have to be a known SNP’s RS number; whatever arbitrary label is provided will be used by

Biofilter to refer to the position whenever it appears in any output file.

Example:

#chr

7

7

3

label

rs123

rs456

rs789

distance

-

-

-

pos

24966446

24962419

29397015

extra

first position

second position

third position

Region Data Input Files

The file format for region input data is similar to that of positional data. Up to four primary data

columns are allowed, separated by tab characters:

 Chromosome (1-22, X, Y, MT)

 Gene symbol or other label

 Base pair start position

 Base pair stop position

If all four of these columns are provided, then any additional columns will be stored and returned via

the “region_extra” output column.

As with positional data, the label column does not necessarily have to be a known gene symbol, and

can be omitted entirely. If the column is omitted then a label of the form “chr1:2345-6789” will be

generated automatically; if labels are provided, then Biofilter will use them to refer to the regions

whenever they appear in any output file.

Example:

#chr

7

7

3

label

THSD7A

OSBPL3

RBMS3

start

11410061

24836158

29322802

stop

11871823

25019759

30051885

extra

first region

second region

third region

Gene and Group List Input Files

Like the SNP input file format, a gene or group input file may simply be a single column of identifiers.

Unlike the SNP file format, gene or group input files may alternatively include two columns separated

by a tab character; in this case, the first column lists the type of the identifier which is in the second

column on the same line, and any additional columns after these two will be stored and returned via the

“gene_extra” or “group_extra” output columns.

 28

The GENE_IDENTIFIER_TYPE and GROUP_IDENTIFIER_TYPE options specify the default type

for any user-provided gene or group identifiers, respectively. This applies to any identifiers given

directly via the GENE or GROUP options, and any identifiers listed in single-column gene or group

list input files. These options do not apply to two-column gene or group input files, since those files

specify their own identifier types in the first column.

An empty identifier type (a blank in the first column of a two-column gene input file, or a

GENE/GROUP_IDENTIFIER_TYPE option with no argument) causes Biofilter to attempt to interpret

the identifier using any known type. The special identifier type “-” instead causes Biofilter to interpret

identifiers as primary labels of genes or groups, and the special type “=” accepts the gene_id or

group_id output values from a previous Biofilter run.

It is important to recall that gene and group identifiers can vary in their degree of uniqueness. For

analyses that depend on a gene’s genomic region (such as comparisons with SNPs or other positions) it

may be preferable to provide the regions directly rather than relying on gene identifiers. If a single

identifier matches more than one gene or group, Biofilter will ignore it unless the appropriate

ALLOW_AMBIGUOUS_GENES or ALLOW_AMBIGUOUS_GROUPS option is used.

Examples:

#gene

THSD7A

OSBPL3

RBMS3

#namespace

symbol

entrez_gid

ensemble_gid

name

THSD7A

26031

ENSG00000144642

extra

first gene

second gene

third gene

Source List Input Files

Since the knowledge sources in LOKI all have single, unique names, there are no identifier types to

consider. Source input files simply contain a single column with the name of a source on each line.

Note that sources play a slightly different role in Biofilter than in LOKI. When building the prior

knowledge database, every source is relevant because they all contribute a different set of knowledge

to the final product: many sources provide groupings of genes or proteins (pathways, interactions, etc),

while others provide information about genes or SNPs themselves (such as their regions or boundaries,

alternate names, etc). In Biofilter, however, sources are only considered in connection with groups;

providing a source list to focus a Biofilter analysis is therefore exactly the same as providing a group

list which includes every group from the source(s) in the source list. In particular, the sources which

LOKI used to define basic SNP and gene information (such as “dbsnp” or “entrez”) are not relevant to

Biofilter since those sources generally do not define any groupings of genes; consequently, using any

of those sources as inputs to Biofilter will generally result in no output.

 29

Example:

#source

netpath

Output File Formats

Configuration Report

The format of a configuration output file is, by design, identical to a configuration input file. The

details of that format can be found in the corresponding section of the previous chapter.

Note however that the INCLUDE instruction is not relevant for configuration output files because the

structure of inclusions is not preserved internally. This means that even if the configuration file(s)

provided to Biofilter include other configuration files, the report generated by the

REPORT_CONFIGURATION option will not contain any INCLUDE instructions. Instead, all options

from all included files will be merged into a single reported configuration.

Gene and Group Name Statistics Reports

These reports list all of the types of identifiers available for genes or groups, respectively, along with

some statistics about their overall uniqueness. For example, this is the gene name statistics report at the

time of writing:

#type

symbol

entrez_gid

refseq_gid

refseq_pid

ensembl_gid

ensembl_pid

hgnc_id

mim_id

hprd_id

vega_id

rgd_id

mirbase_id

unigene_gid

uniprot_gid

uniprot_pid

pharmgkb_gid

names

91687

62977

48880

35719

50159

31225

33036

15446

18065

17572

268

1523

25016

101047

105084

27062

unique

89417

62977

48880

35719

50098

31225

33036

15446

18065

17545

268

1523

24131

101047

98839

27062

ambiguous

2270

0

0

0

61

0

0

0

0

27

0

0

885

0

6245

0

The labels in the first column are the identifier types themselves; these are the values which can be

used with the GENE_IDENTIFIER_TYPE option or in the first column of a two-column gene list

input file. The second column shows the total number of distinct identifiers of that type which are

found in the prior knowledge database file; for example, there are 91,687 different “symbol”

 30

identifiers, which are symbolic abbreviations of genes (i.e. “A1BG”). The second and third columns

break that total down into the number which are associated with only one gene (unique identifiers) and

the number which are associated with multiple genes (ambiguous identifiers).

The names of the identifier types are defined by LOKI, and generally correspond to the organization or

project which assigns that type of name, followed by the particular kind of thing being named. For

example “entrez_gid” refers to the numeric gene numbers assigned by NCBI’s Entrez Gene database,

while “ensembl_pid” refers to protein identifiers assigned by Ensembl.

LD Profiles Report

This report lists the LD profiles available in the knowledge database. If LD Spline has not been used to

calculate LD-adjusted gene boundaries, then only the default profile with canonical gene boundaries

will be shown.

Invalid Input Reports

If the REPORT_INVALID_INPUT option has been enabled, then any user input data which cannot be

parsed or understood by Biofilter will appear in one of these report files. A separate file is generated

for each type of input (SNP, position, region, etc.), and for each invalid input line, that entire line will

be copied to the corresponding report file preceded by a comment line describing the error. For

example, the SNP input file on the left will yield the invalid SNP report file on the right:

#snp

rs12

rs34

chr5:678

rs90

invalid literal for long() with base 10: 'chr5:678'

chr5:678

One of the inputs was not understood as a valid RS number, but the other three were parsed

successfully and added to the input dataset.

Analysis Outputs

Filtering, annotation and modeling analyses always return one or more tab-separated columns, but the

number and contents of those columns can vary. Each analysis mode allows the user to exactly specify

the desired output columns.

In the simplest case, the user can request one of the six data types which Biofilter also takes as input:

SNP, position, region, gene, group or source. The output will then contain one or more columns

describing the specified data type, in exactly the same format as Biofilter requires for input of the same

type. For example, SNP output produces a single column of RS numbers, position output produces

three columns (chromosome, label, position), and so on. More than one basic type can also be output

together (and is required for annotation and modeling analyses), in which case the columns

corresponding to any additional types are simply appended in order to the final output. For example,

the analysis options on the left will produce the output columns on the right:

 31

FILTER position chr position pos

FILTER gene snp gene snp

ANNOTATE gene region gene chr region start stop

MODEL gene gene1 gene2 score

Note that there are two different places Biofilter could draw from when outputting any given type of

data: one of the user input datasets, or the prior knowledge database. If an output type is requested

which was not provided as input then the choice is clear, and Biofilter will produce the requested

output based on the data contained in the knowledge database. For any data type which was provided

as input, however, Biofilter will pull any corresponding output columns from the input data rather than

the knowledge database.

This means, for example, that if regions are supplied as input and both “gene” and “region” are

requested as output, then the result may not be as expected. The output will list both genes and regions,

and the genes in the first column will indeed be the ones whose genomic region matched one of the

provided input regions. However, the region shown next to each gene will not be that gene’s region, as

one might hope; it will instead be the user-provided input region which matched the gene’s region.

Biofilter provides additional output options to deal with situations such as these. The six basic types

will suffice for most use cases, but they are actually only shorthand for their respective sets of

individual output columns. For more particular use cases there are a few additional shorthand types

(such as “generegion”), and any single output column may also be requested individually. This

includes each separate column from any of the six data type outputs (such as “region_chr” which is the

first of four columns included in the “region” output type), as well as some columns which are not

included in any of the shorthand sets.

Biofilter currently supports the following outputs:

snp Shorthand for: snp_label
snp_id The SNP’s RS number, with no prefix; if an input SNP was

merged, the current (new) RS number is shown
snp_label The SNP’s RS number, with “rs” prefix; if an input SNP was

merged, the user-provided (old) RS number is shown
snp_extra Any extra columns provided in the SNP input file

position Shorthand for: position_chr , position_label , position_pos
position_id An arbitrary unique ID number for the position; can be used to

distinguish unlabeled positions with identical genomic locations
position_label The provided (or generated) label for an input position, or the

RS number (with “rs” prefix) for a SNP position from the

knowledge database

position_chr The position’s chromosome number or name
position_pos The position’s basepair location

position_extra Any extra columns provided in the position input file
region Shorthand for: region_chr , region_label , region_start ,

region_stop
region_id An arbitrary unique ID number for the region; can be used to

distinguish unlabeled regions with identical genomic start and

stop locations

 32

region_label The provided (or generated) label for an input region, or the

primary label for a region from the knowledge database
region_chr The region’s chromosome number or name

region_start The region’s basepair start location
region_stop The region’s basepair stop location

region_extra Any extra columns provided in the region input file
generegion Shorthand for: region_chr , gene_label , region_start ,

region_stop

Similar to “region” except that only gene regions from the

knowledge database are returned, even if the user also provided

input regions

gene Shorthand for: gene_label
gene_id An arbitrary unique ID number for the gene; can be used to

distinguish genes with identical labels
gene_label The provided identifier for an input gene, or the primary label

for a gene from the knowledge database
gene_description The gene’s descriptive text from the knowledge database, if any

gene_identifiers All known identifiers for the gene, of any type; formatted as

“type:name|type:name|…”

gene_symbols All known “symbol”-type identifiers (symbolic aliases) for the

gene, formatted as “symbol|symbol|…”

gene_extra Any extra columns provided in the gene input file
upstream Shorthand for: upstream_label , upstream_distance

upstream_id An arbitrary unique ID number for the closest upstream gene
upstream_label The primary label for the closest upstream gene

upsteam_distance The distance to the closest upstream gene

upsteam_start The closest upstream gene’s basepair start location
upsteam_stop The closest upstream gene’s basepair stop location

downstream Shorthand for: downstream_label , downstream_distance
downstream_id An arbitrary unique ID number for the closest downstream gene

downstream_label The primary label for the closest downstream gene
downstream_distance The distance to the closest downstream gene

downstream_start The closest downstream gene’s basepair start location

downstream_stop The closest downstream gene’s basepair stop location
group Shorthand for: group_label

group_id An arbitrary unique ID number for the group; can be used to

distinguish groups with identical labels

group_label The provided identifier for an input group, or the primary label

for a group from the knowledge database

group_description The group’s descriptive text from the knowledge database, if

any

group_identifiers All known identifiers for the group, of any type; formatted as

“type:name|type:name|…”

group_extra Any extra columns provided in the group input file
source Shorthand for: source_label

source_id An arbitrary unique ID number for the source; included for

completeness

source_label The source’s name

 33

gwas Shorthand for: gwas_trait , gwas_snps , gwas_orbeta ,

gwas_allele95ci , gwas_riskAfreq , gwas_pubmed
gwas_rs The RS# which led to the GWAS annotation match

gwas_chr The chromosome on which the GWAS match was found
gwas_pos The basepair location at which the GWAS match was found

gwas_trait The GWAS annotation’s associated trait or phenotype
gwas_snps The full list of SNPs in the GWAS association

gwas_orbeta The odds ratio or beta of the GWAS association

gwas_allele95ci The allele 95% confidence interval of the GWAS association
gwas_riskAfreq The risk allele frequency of the GWAS association

gwas_pubmed The PubMedID of the GWAS association

Inspection of Biofilter’s source code may reveal additional supported columns. They are not

documented here because they are only used for internal or debugging purposes and may change or

disappear in a future release; use them at your own risk.

Example Knowledge
In order to provide examples of filtering, annotation, and model building commands for Biofilter 2.0,

we have provided a simulated LOKI database. This simulated database contains three fictitious sources

(named “light”, “paint” and “spectrum”) which define eleven pathways (named “red”, “green”, “blue”,

“gray”, “cyan”, “magenta”, “yellow”, “gray”, “orange”, “indigo”, “violet”), linked to 13 genes and 21

SNPs.

 34

This simulated knowledge is intended to provide easily-understood examples of Biofilter’s

functionality without relying on real-world cases which might become outdated. Many important

concepts and edge cases are represented here, such as two groups with the same primary label (“gray”)

which can only be differentiated by their aliases (“white” and “black”), some genes with multiple

aliases (i.e. “A” and “A2”), and some aliases referring to multiple genes (i.e. “DE” could be gene D or

gene E).

The groups from the “paint” and “spectrum” sources demonstrate many varieties of ambiguity. These

are discussed in depth in Appendix 1, but for the examples in this chapter we will assume strict

ambiguity options. We can then simplify the diagram of the knowledge by showing associations

between groups and genes without the messy intermediate layer of aliases; in the resulting diagram

below, the dotted lines indicate associations which will be ignored by default, but may appear if the

ambiguity settings are changed.

In order to reproduce the following examples using your own copy of Biofilter, you must run the

“loki-build.py” script using the “--test-data” option; refer to the Installation & Setup section for

details.

 35

Example Commands

Filtering Examples

Example 1: Filtering a list of SNPs by a genotyping platform, where input1 is the first list of SNPs

and input2 is the list of SNPs on the genotyping platform.

Input files:

input1 input2

#snp

rs9

rs11

rs12

rs13

rs14

rs15

rs16

#snp

rs14

rs15

rs16

rs17

rs18

rs19

Configuration:

KNOWLEDGE test.db

SNP_FILE input1

SNP_FILE input2

FILTER snp

Output:

#snp

rs9

rs14

rs15

rs16

Note: The lists of input SNPs are checked against a dbSNP list of SNP ID’s that have been merged, and

any outdated RSIDs are updated with the new RSID. In the example knowledge, rs9 has been merged

into rs19; this is why rs9 appears in the output.

 36

Example 2: Output a list of SNPs from a genotyping platform that correspond to a list of genes.

Input files:

input1 input2

#snp

rs11

rs12

rs13

rs14

rs15

rs16

#gene

A

C

E

Configuration:

KNOWLEDGE test.db

SNP_FILE input1

GENE_FILE input2

FILTER snp

Output:

#snp

rs11

rs12

rs15

rs16

 37

Example 3: Input a list of groups, output regions within those groups.

Configuration:

KNOWLEDGE test.db

GROUP red green cyan magenta orange indigo

FILTER region

Output:

#chr

1

1

1

3

3

3

region

A

B

C

P

Q

R

start

8

28

54

14

28

44

stop

22

52

62

18

36

52

Example 4: Output a list of all genes within a data source.

Configuration:

KNOWLEDGE test.db

SOURCE light

FILTER gene

Output:

#gene

A

B

C

D

E

F

G

 38

Example 5: Start with a list of genes, output all the genes within particular groups.

Input files:

input1 input2

#group

red

green

cyan

magenta

orange

indigo

#gene

A

C

E

P

R

Configuration:

KNOWLEDGE test.db

GROUP_FILE input1

GENE_FILE input2

FILTER region

Output:

#chr

1

1

3

3

region

A

C

P

R

start

8

54

14

44

stop

22

62

18

52

 39

Example 6: Start with genes associated with a pathway or group, output genes within that group

that overlap with an input list of genes.

Configuration:

KNOWLEDGE test.db

GENE P Q R

FILTER gene snp region group source

Output:

#gene

Q

Q

R

R

snp

rs33

rs33

rs35

rs35

chr

3

3

3

3

region

Q

Q

R

R

start

28

28

44

44

stop

36

36

52

52

group

orange

indigo

orange

indigo

source

spectrum

spectrum

spectrum

spectrum

Example 7: Starting with a list of genes, determine genes are within a group.

Configuration:

KNOWLEDGE test.db

GENE A C E H P Q R

GROUP cyan

FILTER gene group

Output:

#gene

A

C

group

cyan

cyan

Annotation Examples

Example 1: Annotating a SNP with gene region information.

Configuration:

KNOWLEDGE test.db

SNP rs11 rs24 rs99

ANNOTATE snp region

 40

Output:

#snp

rs11

rs24

rs24

rs99

chr

1

2

2

region

A

H

I

start

8

22

38

stop

22

42

48

Example 2: Annotating SNPs with location information.

A user can provide Biofilter with a list of SNPs as an input and map those SNPs to the corresponding

chromosome and base pair location (if any) as shown in the example below.

Configuration:

KNOWLEDGE test.db

SNP rs11 rs24 rs99

ANNOTATE snp position

Output:

#snp

rs11

rs24

rs99

chr

1

2

position

rs11

rs24

pos

10

40

 41

Example 3: Map a SNP to the groups and sources where the SNP is present.

Biofilter can be used to map a list of SNPs, or a single SNP, to the groups and sources where those

SNPs are present.

Configuration:

KNOWLEDGE test.db

SNP rs11 rs24 rs99

ANNOTATE snp group source

Output:

#snp

rs11

rs11

rs11

rs11

rs11

rs24

rs99

group

red

green

blue

gray

cyan

source

light

light

light

light

paint

Example 4: Annotating a base pair region with the list of SNPs in that region.

A region can be supplied to Biofilter, with an output of the SNPs known to be in that region.

Configuration:

KNOWLEDGE test.db

REGION 1:1:60

ANNOTATE snp region

Output:

#snp

rs11

rs12

rs13

rs14

rs15

rs15

rs16

rs16

chr

1

1

1

1

1

1

1

1

region

A

A

B

B

B

C

C

D

start

8

8

28

28

28

52

54

58

stop

22

22

52

52

52

62

62

72

 42

Example Filtering followed by annotation

Example 1: Input a SNP list and map SNP positions to regions.

Configuration:

KNOWLEDGE test.db

SNP rs11 rs12 rs13 rs14 rs15 rs16

FILTER region

Output:

#chr

1

1

1

1

region

A

B

C

D

start

8

28

54

58

stop

22

52

62

72

Example 2: Map SNPs to groups and filter on the source.

Configuration:

KNOWLEDGE test.db

SOURCE paint

FILTER snp group source

 43

Output:

#snp

rs11

rs12

rs15

rs16

group

cyan

cyan

cyan

cyan

source

paint

paint

paint

paint

Example 3: Testing overlap of SNP and region lists, outputting regions.

Input files:

input1 input2

#snp

rs14

rs15

rs16

rs17

rs18

rs19

#chr

1

1

1

1

region

A

B

C

D

start

8

28

54

58

stop

22

52

62

72

Configuration:

KNOWLEDGE test.db

SNP_FILE input1

REGION_FILE input2

FILTER region

Output:

#chr

1

1

1

region

B

C

D

start

28

54

58

stop

52

62

72

Example 4: Testing overlap of gene and source lists, outputting regions.

Configuration:

KNOWLEDGE test.db

GENE A C E G P R

SOURCE spectrum

FILTER region

 44

Output:

#chr

3

3

region

P

R

start

14

44

stop

18

52

Example 5: Filter gene list based on sources, and output regions.

Configuration:

KNOWLEDGE test.db

GENE A C E G P R

SOURCE paint spectrum

FILTER gene source region

Output:

#gene

A

C

P

R

source

paint

paint

spectrum

spectrum

chr

1

1

3

3

region

A

C

P

R

start

8

54

14

44

stop

22

62

18

52

Example 6: Output of genes found in pathway based input, filtered by genotyping platform.

Configuration:

KNOWLEDGE test.db

SNP rs11 rs12 rs13 rs14

GENE A C E G P R

GROUP cyan yellow

FILTER region

Output:

#chr

1

region

A

start

8

stop

22

 45

Example 7: Output of genes annotated by group found in pathway based input, filtered by

genotyping platform.

Configuration:

KNOWLEDGE test.db

SNP rs11 rs12 rs13 rs14 rs16 rs17 rs18

GENE A C E G P R

GROUP cyan yellow

FILTER gene group

Output:

#gene

A

C

group

cyan

cyan

Example 8: Genes within data sources from a list of input genes filtered by genotyping platform,

output regions.

Configuration:

KNOWLEDGE test.db

SNP rs11 rs12 rs13 rs14 rs16 rs17 rs18

GENE A C E G P R

SOURCE paint spectrum

FILTER region

 46

Output:

#chr

1

1

region

A

C

start

8

54

stop

22

62

Example 9: Find overlap between two SNP lists and map the overlapping SNPs to the genes.

Input files:

input1 input2

#snp

rs11

rs12

rs13

rs14

rs15

rs16

#snp

rs14

rs15

rs16

rs17

rs18

rs19

Configuration:

KNOWLEDGE test.db

SNP_FILE input1

SNP_FILE input2

FILTER snp gene region

Output:

#snp

rs14

rs15

rs15

rs16

rs16

gene

B

B

C

C

D

chr

1

1

1

1

1

region

B

B

C

C

D

start

28

28

54

54

58

stop

52

52

62

62

72

Example 10: Find overlapping SNPs between the two lists and map the overlapping SNPs to the

genes, regions, groups and the sources.

Configuration:

KNOWLEDGE test.db

SNP rs11 rs12 rs13 rs14 rs15 rs16

SNP rs14 rs15 rs16 rs17 rs18 rs19

FILTER snp gene region group source

 47

Output:

#snp

rs14

rs14

rs14

rs15

rs15

rs15

rs15

rs15

rs15

rs16

rs16

rs16

rs16

gene

B

B

B

B

B

B

C

C

C

C

C

C

D

chr

1

1

1

1

1

1

1

1

1

1

1

1

1

region

B

B

B

B

B

B

C

C

C

C

C

C

D

start

28

28

28

28

28

28

54

54

54

54

54

54

58

stop

52

52

52

52

52

52

62

62

62

62

62

62

72

group

red

green

gray

red

green

gray

blue

gray

cyan

blue

gray

cyan

gray

source

light

light

light

light

light

light

light

light

paint

light

light

paint

light

Example 11: Mapping regions to genes using Biofilter based on percent of overlap.

Regions such as copy number variations can be mapped to genes using Biofilter, carried out based on

percent of overlap of the genes with the CNV region or based on the number of base pairs overlapped.

For reference, here are the boundary positions for the genes in chromosome 1:

#chr

1

1

1

1

1

1

1

gene

A

B

C

D

E

E

F

start

8

28

54

58

78

84

94

stop

22

54

62

72

82

92

98

Configuration:

KNOWLEDGE test.db

REGION 1:1:60

REGION_MATCH_PERCENT 50

FILTER gene

Output:

#gene

A

B

C

 48

This output indicates that at least 50% of genes A, B, and C fall within the first 60 bases of the first

chromosome. Both genes A and B match 100% of the region while gene C matches 75%.

Example 12: Mapping regions to genes using Biofilter based on base pair overlap.

The genes overlapping region based on number of base-pair overlap can also be determined via

Biofilter.

Configuration:

KNOWLEDGE test.db

REGION 1:1:60

REGION_MATCH_BASES 10

FILTER gene

Output:

#gene

A

B

This output uses the region-match-bases argument to specify that Biofilter should filter genes that only

match a minimum of 10 bases within the given input region.

Example 13: Annotating a list of gene symbols with SNPs, regions, groups, and sources, using

Biofilter.

Configuration:

KNOWLEDGE test.db

GENE A B C D E

FILTER gene snp region group source

Output:

#gene

A

A

A

A

A

A

A

A

A

A

B

B

B

snp

rs11

rs11

rs11

rs11

rs11

rs12

rs12

rs12

rs12

rs12

rs13

rs13

rs13

chr

1

1

1

1

1

1

1

1

1

1

1

1

1

region

A

A

A

A

A

A

A

A

A

A

B

B

B

start

8

8

8

8

8

8

8

8

8

8

28

28

28

stop

22

22

22

22

22

22

22

22

22

22

52

52

52

group

red

green

blue

gray

cyan

red

green

blue

gray

cyan

red

green

gray

source

light

light

light

light

paint

light

light

light

light

paint

light

light

light

 49

B

B

B

B

B

B

C

C

C

C

C

C

D

D

E

E

rs14

rs14

rs14

rs15

rs15

rs15

rs15

rs15

rs15

rs16

rs16

rs16

rs16

rs17

rs18

rs19

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

B

B

B

B

B

B

C

C

C

C

C

C

D

D

E

E

28

28

28

28

28

28

54

54

54

54

54

54

58

58

78

84

52

52

52

52

52

52

62

62

62

62

62

62

72

72

82

92

red

green

gray

red

green

gray

blue

gray

cyan

blue

gray

cyan

gray

gray

gray

gray

light

light

light

light

light

light

light

light

paint

light

light

paint

light

light

light

light

Modeling Example

Here we present an example with two sources and eight pathways shown in the below figure, to

explain how Biofilter can generate pairwise SNP-SNP and Gene-Gene models. In further sections we

explain other options for how model generation can be performed in Biofilter 2.0.

 50

Step 1

Map the input list of SNPs to genes within Biofilter; for this example, we will use all of the SNPs on

the first chromosome. Note that Gene F does not contain any SNPs.

Configuration:

KNOWLEDGE test.db

SNP 11 12 13 14 15 16 17 18 19

FILTER gene

Output:

#gene

A

B

C

D

E

Step 2

Connect, pairwise, the genes that contain SNPs in the input list of SNPs.

Configuration:

KNOWLEDGE test.db

GENE A B C D E

MODEL gene

Output:

#gene1

A

gene2

C

score(src-grp)

2-3

 51

Biofilter has determined that genes A and C are found together in three groups across two sources. In

other words, both the light and paint sources contain groups—blue, gray, and cyan—that suggest a

relationship between genes A and C.

This relationship is summarized by the implication score “2-3,” which gives the number of sources

followed by the number of groups which support this gene model. Each time the same pairwise model

of genes is found in another source, the left-hand index of the implication score for that pairwise model

increases by one; each time it is found in another group from the same source, the right-hand index

increases by one.

Step 3

Break down the gene-gene models into all pairwise combinations of SNPs across the genes within

sources light and paint.

Configuration:

KNOWLEDGE test.db

SOURCE light paint

MODEL snp

Output:

#snp1

rs11

rs11

rs12

rs12

snp2

rs15

rs16

rs15

rs16

score(src-grp)

2-3

2-3

2-3

2-3

 52

Changes in Biofilter 2.0 Modeling

Although this three-step strategy will work in the new version of Biofilter, the strategy can be

simplified. Biofilter 2.0 will automatically generate gene models prior to generating SNP models and

there is no need to specify that step separately. It is possible to generate the SNP models with a single

command.

Configuration:

KNOWLEDGE test.db

SNP 11 12 13 14 15 16 17 18 19

MODEL snp

Output:

#snp1

rs11

rs11

rs12

rs12

snp2

rs15

rs16

rs15

rs16

score(src-grp)

2-3

2-3

2-3

2-3

 53

Appendix 1: Ambiguity in Prior Knowledge

When an ambiguous gene or group identifier appears in a user input file, Biofilter has two

straightforward options: either include all genes or groups with which the identifier is associated, or

none of them.

When processing the bulk downloads from prior knowledge sources, however, the situation can

become more complicated. This is due to the fact that in many cases, the data provided by a source is

formatted in a way which allows multiple identifiers to be provided for the same member of a group.

Ideally all such identifiers are known to refer to the same single gene, but occasionally this is not the

case. Sometimes one of the identifiers is an alias of more than one gene, making it inherently

ambiguous; other times, even if every identifier refers to only one gene, they might not all agree on

which gene that is.

The testing knowledge included with Biofilter contains several examples of these kinds of situations,

depicted in the diagram below. Note that this diagram reflects the fact that there may be multiple

names for the same gene (i.e. “D” and “DE” both refer to gene D), and some names may be associated

with multiple genes (i.e. “DE” refers to both genes D and E).

The “cyan” group contains three genes, of which the third is ambiguous because we are given two

identifiers for it, but one of them refers to two different genes. The “magenta”, “yellow” and

“gray/black” groups each contain only one gene, but in each case we are given three different names

for that gene which agree or disagree with each other in varying ways. Because of the ambiguity in the

provided identifiers, the genes which are considered members of these groups will appear to vary

depending on the user’s choice for the ALLOW_AMBIGUOUS_KNOWLEDGE and

REDUCE_AMBIGUOUS_KNOWLEDGE options.

 54

Ambiguity Reduction Heuristics

Biofilter and LOKI currently support two heuristic strategies for reducing ambiguity. These strategies

make what is essentially an educated guess about what the original data source intended by the set of

identifiers it provided. The first heuristic is called “implication” and it rates the likelihood of each

potential gene being the intended one by counting the number of identifiers which implicate that gene.

The second heuristic, called “quality,” is similar except that it also considers the number of genes that

each identifier refers to as a measure of that identifier’s quality; a high-quality identifier (which refers

to only one or two genes) is then given more weight than a low-quality identifier (which refers to many

genes).

In practice, these two heuristic strategies will often produce the same results; in fact, when using real

data from our real prior knowledge sources, we have yet to find a case where they do not reach the

same conclusion. It is possible that such a case will arise in the future, however, so the “magenta”,

“yellow” and “gray/black” groups in the testing knowledge have been specially crafted to highlight

these potential differences.

Ambiguity Options

The REDUCE_AMBIGUOUS_KNOWLEDGE option tells Biofilter which heuristics, if any, should

be employed to mitigate ambiguity in the prior knowledge database. The permissible values for this

option are the name of any of the heuristic strategies, or “no” or “any”. When set to “no” then no

attempt is made to reduce ambiguity and all genes which are implicated by any of the provided

identifiers are considered equally likely interpretations. When set to “any” then all heuristics are

attempted simultaneously and the winner(s) from each one collectively become the preferred choices.

The ALLOW_AMBIGUOUS_KNOWLEDGE option tells Biofilter what to do when it has more than

one “best guess” interpretation for an ambiguous member of a group. If no heuristics were used then

this occurs for all cases of ambiguity, but it should also be noted that any heuristic strategy might be

only partly successful. For example, if a given set of identifiers collectively refer to three different

genes and the heuristic(s) can only eliminate one of them, then the other two remain equally likely

possibilities. In cases like this, the user’s choice for ALLOW_AMBIGUOUS_KNOWLEDGE

determines the result: when disabled (the strict option) none of the possible genes will be considered a

member of the group, but when enabled (the permissive option) the most-likely possibilities will all be

included, without any of the less-likely possibilities.

Gene Ambiguity Examples

Example 1: cyan

The “cyan” group is a typical case of ambiguity which can be fully resolved by either of the heuristic

strategies. Its first two members (genes A and C) are unambiguous and will always be included, but the

correct third member of the group is open to interpretation.

The implication heuristic will declare D as the correct interpretation since it is implicated by both of

the provided identifiers, while gene E is only implicated by one of them.

 55

The quality heuristic will also choose D, but its reasoning is a little more involved. The “DE” identifier

refers to two different genes, so it gets a quality score of 1/2 or 0.5; the “D” identifier, on the other

hand, gets a quality score of 1 because it refers to only one gene. Gene E therefore receives only 0.5

points, while gene D wins with 1.5 total points.

Because the ambiguity can be fully resolved by either heuristic, the

ALLOW_AMBIGUOUS_KNOWLEDGE option will only have an effect if no heuristics are used at

all. In that case, the group will contain all four possible genes (A, C, D and E) if the option is enabled,

but only A and C if it is disabled.

Example 2: magenta

The “magenta” group demonstrates ambiguity which can only be resolved by the implication heuristic:

gene E is implicated by two identifiers (“DE” and “EF”) while genes D, F and G are each only

implicated by one identifier.

The quality heuristic will discard genes D and F (0.5 points each), but cannot pick a winner between E

and G because they both have a score of 1.0: gene E gets 0.5 each from the “DE” and “EF” identifiers,

while gene G gets 1 full point from “G”.

With no heuristics, the ALLOW_AMBIGUOUS_KNOWLEDGE option will either include all four

genes or none of them. With the quality heuristic, it can either include both winners (E and G) or

nothing. With the implication heuristic it has no effect here, since the ambiguity was eliminated with

that strategy.

Example 3: yellow

The “yellow” group demonstrates ambiguity which can only be resolved by the quality heuristic: gene

G wins with a score of 1.5 (0.5 from “FG” plus 1.0 from “G”).

The implication heuristic will discard gene E (implicated by only one identifier), but cannot choose

between F and G because they are implicated by two identifiers each: “EF and “FG”, or “FG and “G”.

With no heuristics, as always ALLOW_AMBIGUOUS_KNOWLEDGE will either include every

possibility or none of them. With the implication heuristic it can either include both F and G or

nothing, and with the quality heuristic it has no effect.

Example 4: gray/black

The “gray/black” group is an example of ambiguity which cannot be resolved by either heuristic: genes

F and G are entirely comparable, both being referenced by one specific identifier plus one (shared)

ambiguous identifier. No matter which heuristic is used, if any, this group will always contain both F

and G if ALLOW_AMBIGUOUS_KNOWLEDGE is enabled, or neither if it is disabled.

 56

Protein Identifiers

So far, our depiction of ambiguity in the knowledge database has implied that groups always contain

genes. This allows for the convenient assumption that when we are given more than one identifier for

something in a group, we are expecting all of those identifiers to refer to one (and only one) gene.

The reality is, of course, a little more complicated: some sources provide groups which actually

contain proteins. In order to make this knowledge compatible with the rest of the prior knowledge,

LOKI must translate these protein references into genes, but this breaks that convenient assumption. If

a group contains genes then we can reasonably expect each member of the group to be a single gene,

but if the group contains proteins, then we must be prepared for a single protein-member to correspond

to many genes.

To account for this, LOKI differentiates between identifiers which refer directly to genes (such as

symbolic abbreviations or Entrez Gene ID numbers) and identifiers which refer to proteins (such as

UniProt ID numbers) that may in turn correspond to many genes.

If any of the identifiers provided for one member of a group is a protein identifier, LOKI disregards

any non-protein identifiers. If there is only one protein identifier, then LOKI considers all genes which

correspond to that protein to be members of the group, with no ambiguity. If there are multiple protein

identifiers then there may be ambiguity if they do not correspond to the same set of genes.

Since protein identifiers are expected to correspond to multiple genes, the concept of an identifier’s

“quality” no longer has meaning; consequently, whenever protein identifiers are involved, the

implication and quality heuristic strategies become functionally equivalent. In both cases, a gene’s

likelihood of being associated with a group is proportional to the number of protein identifiers which

implicated it. When no heuristics are used, then all genes which are implicated by any of the protein

identifiers are considered equally likely to belong in the group.

The testing knowledge included with Biofilter also contains several examples of groups with protein

identifiers:

 57

Protein Ambiguity Examples

Example 1: orange

The “orange” group contains a simple, unambiguous use of protein identifiers. No matter what options

are used, this group will always contain the genes P, Q and R.

Example 2: indigo

The “indigo” group demonstrates a more complicated but still unambiguous situation. The two protein

identifiers agree with each other, so the group will always contain the genes P, Q and R no matter what

options are used. However there is an extraneous gene identifier which is ignored, even though it does

not appear to match the protein identifiers. In practice, this is rarely the case; when a source provides

both protein and gene identifiers, the latter usually agree with the former.

Example 3: violet

In the “violet” group the two protein identifiers only partly agree: both of them correspond to genes Q

and R, but one of them also matches P while the other also matches S.

If ALLOW_AMBIGUOUS_KNOWLEDGE is enabled then all four genes will be included in the

group. If it is disabled, then any heuristic strategy will include genes Q and R but not P or S. If no

heuristics are used either, then the group will appear empty.

 58

Appendix 2: LD Profiles

Each LD profile is defined by two things: a reference population whose particular LD patterns are

relevant to the user’s analysis, and a threshold value to specify what the user considers “high LD.”

Every LOKI knowledge database file begins with a default, unnamed LD profile which contains the

canonical gene region boundaries and therefore has no reference population or LD threshold. All other

LD profiles are calculated based on these original boundaries, which means whenever the LOKI

knowledge database is updated, the LD profiles must also be re-calculated to incorporate any changes

in the original gene region boundaries.

In order to generate LD profiles, Biofilter is distributed with a separate software tool called LD Spline.

This tool can use specific LD measurements from the HapMap project to extrapolate more general LD

patterns, which can in turn be used to calculate LD profiles containing adjusted gene region

boundaries. More information about LD Spline is available from www.ritchielab.psu.edu.

Installing LD Spline

LD Spline is written in C and must therefore be compiled for your local computing environment before

it can be used. To do this automatically as part of the Biofilter installation process, simply use the

“--ldprofile” option:

python setup.py install --ldprofile

This will compile and install the “ldspline” executable, along with a few supporting scripts which

automate the process of generating and storing LD profiles in LOKI.

Generating LD Profiles

The LOKI prior knowledge database file must be generated before the LD adjustment can be done;

refer to the Biofilter installation instructions for details on this procedure. Once the knowledge file is

available, use the “buildPopulations.py” script to generate additional LD profiles. For example:

buildPopulations.py --db loki.db --populations CEU,YRI --dprime 0.6,0.7

--rsquared 0.8,0.9

This will generate 8 additional LD profiles for use in LOKI and Biofilter: four each for the CEU and

YRI populations, of which two represent the LD pattern using D’ thresholds of 0.6 and 0.7 and the

other two use the R
2
 metric with thresholds of 0.8 and 0.9. Note that building LD profiles may take

quite some time; plan for at least 2 hours per population when run on a local disk, or twice that on a

networked filesystem (such as GPFS). The build process also requires ~2 GB of RAM and some

temporary disk space in the working directory: allow for 10 GB, plus another 10 GB per population.

With the modified knowledge database file, Biofilter can then make use of the alternate gene regions

via the LD_PROFILE option:

biofilter.py --knowledge loki.db –-ld-profile CEU-RS0.80

http://www.ritchielab.psu.edu/

 59

The “--report-ld-profiles” option can be used to list the LD profiles available in a LOKI database file:

biofilter.py --knowledge withld.db –-report-ld-profiles

#ldprofile

CEU-DP0.60

CEU-DP0.70

CEU-RS0.80

CEU-RS0.90

YRI-DP0.60

YRI-DP0.70

YRI-RS0.80

YRI-RS0.90

description

no LD adjustment

CEU population from HapMap with dprime cutoff 0.6

CEU population from HapMap with dprime cutoff 0.7

CEU population from HapMap with rsquared cutoff 0.8

CEU population from HapMap with rsquared cutoff 0.9

YRI population from HapMap with dprime cutoff 0.6

YRI population from HapMap with dprime cutoff 0.7

YRI population from HapMap with rsquared cutoff 0.8

YRI population from HapMap with rsquared cutoff 0.9

metric

dprime

dprime

rsquared

rsquared

dprime

dprime

rsquared

rsquared

value

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

Population Build Script Options

--help

Displays the program usage and immediately exits.

--populations

A comma-separated list of 3-letter HapMap population identifiers (i.e. “CEU”, “JPT”, “YRI”, etc.)

--rsquared

A comma-separated list of R
2
 threshold values (between 0 and 1) for which to generate LD profiles.

--dprime

A comma-separated list of D’ threshold values (between 0 and 1) for which to generate LD profiles.

--liftover

The location of UCSC’s liftOver utility, which is needed to convert HapMap’s LD measurements to the

current reference genome build. If omitted, liftOver must be available on the path.

--ldspline

The location of the LD Spline utility, which will be installed by the Biofilter installer if given the

“--ldprofile” option. If omitted, ldspline must be available on the path.

--poploader

The location of the pop_loader helper script, which will be installed by the Biofilter installer if given

the “--ldprofile” option. If omitted, pop_loader must be available on the path.

--db

The LOKI prior knowledge database file in which to generate LD-adjusted gene regions. The database

must already contain the canonical gene regions.

--keep-data

Generating LD profiles requires many intermediate files such as original LD data from HapMap and

extrapolated LD data from LD Spline. By default these intermediate files are deleted after use; if this

option is specified, they will be left in place.

	Introduction
	What is Biofilter?
	Why use Biofilter?
	Library of Knowledge Integration (LOKI)
	Knowledge Sources
	Data Types
	Analysis Modes
	Filtering
	Annotation
	Modeling

	Primary and Alternate Input Datasets
	Identifiers

	Installation & Setup
	Prerequisites
	Platforms
	Installing Biofilter
	Compiling Prior Knowledge
	LOKI Build Script Options

	Updating & Archiving Prior Knowledge
	LD Profiles

	Using Biofilter
	Configuration Options
	--help / HELP
	--version / VERSION
	--report-configuration / REPORT_CONFIGURATION
	--report-replication-fingerprint / REPORT_REPLICATION_FINGERPRINT

	Prior Knowledge Options
	--knowledge / KNOWLEDGE
	--report-genome-build / REPORT_GENOME_BUILD
	--report-gene-name-stats / REPORT_GENE_NAME_STATS
	--report-group-name-stats / REPORT_GROUP_NAME_STATS
	--allow-unvalidated-snp-positions / ALLOW_UNVALIDATED_SNP_POSITIONS
	--allow-ambiguous-knowledge / ALLOW_AMBIGUOUS_KNOWLEDGE
	--reduce-ambiguous-knowledge / REDUCE_AMBIGUOUS_KNOWLEDGE
	--report-ld-profiles / REPORT_LD_PROFILES
	--ld-profile / LD_PROFILE
	--verify-biofilter-version / VERIFY_BIOFILTER_VERSION
	--verify-loki-version / VERIFY_LOKI_VERSION
	--verify-source-loader / VERIFY_SOURCE_LOADER
	--verify-source-option / VERIFY_SOURCE_OPTION
	--verify-source-file / VERIFY_SOURCE_FILE

	Primary Input Data Options
	--snp / SNP
	--snp-file / SNP_FILE
	--position / POSITION
	--position-file / POSITION_FILE
	--region / REGION
	--region-file / REGION_FILE
	--gene / GENE
	--gene-file / GENE_FILE
	--gene-identifier-type / GENE_IDENTIFIER_TYPE
	--allow-ambiguous-genes / ALLOW_AMBIGUOUS_GENES
	--gene-search / GENE_SEARCH
	--group / GROUP
	--group-file / GROUP_FILE
	--group-identifier-type / GROUP_IDENTIFIER_TYPE
	--allow-ambiguous-groups / ALLOW_AMBIGUOUS_GROUPS
	--group-search / GROUP_SEARCH
	--source / SOURCE
	--source-file / SOURCE_FILE

	Alternate Input Data Options
	--alt-snp / ALT_SNP
	--alt-snp-file / ALT_SNP_FILE
	--alt-position / ALT_POSITION
	--alt-position-file / ALT_POSITION_FILE
	--alt-region / ALT_REGION
	--alt-region-file / ALT_REGION_FILE
	--alt-gene / ALT_GENE
	--alt-gene-file / ALT_GENE_FILE
	--alt-gene-search / ALT_GENE_SEARCH
	--alt-group / ALT_GROUP
	--alt-group-file / ALT_GROUP_FILE
	--alt-group-search / ALT_GROUP_SEARCH
	--alt-source / ALT_SOURCE
	--alt-source-file / ALT_SOURCE_FILE

	Positional Matching Options
	--region-position-margin / REGION_POSITION_MARGIN
	--region-match-percent / REGION_MATCH_PERCENT
	--region-match-bases / REGION_MATCH_BASES

	Model Building Options
	--maximum-model-count / MAXIMUM_MODEL_COUNT
	--alternate-model-filtering / ALTERNATE_MODEL_FILTERING
	--all-pairwise-models / ALL_PAIRWISE_MODELS
	--maximum-model-group-size / MAXIMUM_MODEL_GROUP_SIZE
	--minimum-model-score / MINIMUM_MODEL_SCORE
	--sort-models / SORT_MODELS

	Output Options
	--quiet / QUIET
	--verbose / VERBOSE
	--prefix / PREFIX
	--overwrite / OVERWRITE
	--stdout / STDOUT
	--report-invalid-input / REPORT_INVALID_INPUT
	--filter / FILTER
	--annotate / ANNOTATE
	--model / MODEL

	Input File Formats
	Configuration Files
	SNP List Input Files
	Position Data Input Files
	Region Data Input Files
	Gene and Group List Input Files
	Source List Input Files

	Output File Formats
	Configuration Report
	Gene and Group Name Statistics Reports
	LD Profiles Report
	Invalid Input Reports
	Analysis Outputs

	Example Knowledge
	Example Commands
	Filtering Examples
	Example 1: Filtering a list of SNPs by a genotyping platform, where input1 is the first list of SNPs and input2 is the list of SNPs on the genotyping platform.
	Example 2: Output a list of SNPs from a genotyping platform that correspond to a list of genes.
	Example 3: Input a list of groups, output regions within those groups.
	Example 4: Output a list of all genes within a data source.
	Example 5: Start with a list of genes, output all the genes within particular groups.
	Example 6: Start with genes associated with a pathway or group, output genes within that group that overlap with an input list of genes.
	Example 7: Starting with a list of genes, determine genes are within a group.

	Annotation Examples
	Example 1: Annotating a SNP with gene region information.
	Example 2: Annotating SNPs with location information.
	Example 3: Map a SNP to the groups and sources where the SNP is present.
	Example 4: Annotating a base pair region with the list of SNPs in that region.

	Example Filtering followed by annotation
	Example 1: Input a SNP list and map SNP positions to regions.
	Example 2: Map SNPs to groups and filter on the source.
	Example 3: Testing overlap of SNP and region lists, outputting regions.
	Example 4: Testing overlap of gene and source lists, outputting regions.
	Example 5: Filter gene list based on sources, and output regions.
	Example 6: Output of genes found in pathway based input, filtered by genotyping platform.
	Example 7: Output of genes annotated by group found in pathway based input, filtered by genotyping platform.
	Example 8: Genes within data sources from a list of input genes filtered by genotyping platform, output regions.
	Example 9: Find overlap between two SNP lists and map the overlapping SNPs to the genes.
	Example 10: Find overlapping SNPs between the two lists and map the overlapping SNPs to the genes, regions, groups and the sources.
	Example 11: Mapping regions to genes using Biofilter based on percent of overlap.
	Example 12: Mapping regions to genes using Biofilter based on base pair overlap.
	Example 13: Annotating a list of gene symbols with SNPs, regions, groups, and sources, using Biofilter.

	Modeling Example
	Step 1
	Step 2
	Step 3
	Changes in Biofilter 2.0 Modeling

	Appendix 1: Ambiguity in Prior Knowledge
	Ambiguity Reduction Heuristics
	Ambiguity Options
	Gene Ambiguity Examples
	Example 1: cyan
	Example 2: magenta
	Example 3: yellow
	Example 4: gray/black

	Protein Identifiers
	Protein Ambiguity Examples
	Example 1: orange
	Example 2: indigo
	Example 3: violet

	Appendix 2: LD Profiles
	Installing LD Spline
	Generating LD Profiles
	Population Build Script Options

