
genomeSIMLA - A forward time simulation for genetic data

g e n o m e S I M L A
Reference Manual rev. 1 .0 .1

h t t p : / / c h g r. m c . v a n d e r b i l t . e d u / g e n o m e S I M L A

http://chgr.mc.vanderbilt.edu/genomeSIMLA
http://chgr.mc.vanderbilt.edu/genomeSIMLA

Table of Contents

Introduction! 1

Purpose of this manual! 1

Conventions Used! 1

Random Numbers! 1

Common Parameters! 1

Integer! 2

Float! 2

Index! 2

max! 2

min! 2

On/Off! 2

filename! 2

label! 2

description! 2

Using genomeSIMLA! 3

Command-Line Arguments! 3

genomeSIMLAs config-file [ld|datasets] [-p project-name] [-l Integer] [-d Integer
Integer Integer] [-s Integer]! 3

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A

i

Config-file! 3

ld (optional)! 3

datasets (optional)! 3

-p project-name (optional)! 3

-l generation-to-load (Integer) (optional)! 3

-d first-generation-to-drop generations-between-drops drop-count (optional)! 3

-s seed (integer)! 3

General Parameters! 4

The following parameters control the basic behavior of the application.! 4

SEED integer! 4

SEED 23125! 4

Drop Points! 4

FIRST_DROP_POINT integer! 4

FIRST_DROP_POINT 500 4

DROP_FREQUENCY integer! 4

DROP_FREQUENCY 100 4

DROP_COUNT! 4

DROP_COUNT 5 4

Graphical Plot Settings! 4

MAX_SNPS_PER_ROW integer! 4

MAX_SNPS_PER_ROW 3000 4

BLOCK_REPORT_SIZE integer! 4

BLOCK_REPORT_SIZE 30 4

FONT filename! 5
R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A

ii

FONT ./FreeMonoBold.ttf 5

CSS_FILENAME filename! 5

CSS_FILENAME ../genomesimla.css 5

LD_REPORT_BUFFER_SIZE On/Off! 5

LD_BUFFER_SIZE 50 5

WRITE_LD_REPORT On/Off! 5

WRITE_LD_REPORT On 5

DRAW_RSQUARED_PLOTS On/Off! 6

DRAW_DPRIME_PLOTS On/Off! 6

DRAW_RSQUARED_PLOTS Off 6

MAX_SNP_DISTANCE integer! 6

MAX_SNP_DISTANCE 500000 6

CLOSE_POOLS_BETWEEN_DROPS On/Off! 6

CLOSE_POOLS_BETWEEN_DROPS On 6

FAST_LD_POOL_SIZE integer! 6

FAST_LD_POOL_SIZE 3000 6

FAST_LD_PLOT_SIZE! 6

FAST_LD_PLOT_SIZE 10000 6

NO_FASTLD 6

Locus Generation! 7

Block Based Locus Generation! 7

DEFAULT_BLOCK min max float float float float! 7

DEFAULT_BLOCK 5 10 0.01 0.015 0.00001 0.000025 7

ADD_CHROMOSOME integer label! 8

ADD_CHROMOSOME 5 chromosome_1 8

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A

iii

ADD_BLOCK chr_idx snp_idx float float float float float! 8

ADD_BLOCK 5 10 0.0001 0.0002
0.000001 0.00001
0.5 8

Other Block Related Settings! 8

DEFAULT_ALLELE_FREQ float float! 8

DEFAULT_ALLELE_FREQ 0.1 0.5 8

File Based Chromosome Configuration! 8

Locus File Format! 8

Locus Miscellany! 9

ALLELE_FREQUENCY chr_idx snp_idx float float! 9

ALLELE_FREQUENCY 1 5 0.25 0.75 9

Population Control! 10

GROWTH_RATE LINEAR initial_population variation growth_rate! 10

GROWTH_RATE LINEAR 30000 0.05 10.0 10

GROWTH_RATE EXPONENTIAL initial_population variation growth_rate! 10

GROWTH_RATE EXPONENTIAL 700 0.05 0.3 10

GROWTH_RATE LOGISTIC initial_population variation growth_rate carry-
ing_capacity! 11

GROWTH_RATE LOGISTIC initial_population variation growth_rate carrying_ca-
pacity 11

GROWTH_RATE RICHARDS initial_population variation growth_rate carry-
ing_capacity time_of_max_growth polarity! 11

GROWTH_RATE LOGISTIC initial_population variation growth_rate carrying_ca-
pacity time_of_max_growth polarity 11

General Growth rate parameters! 11

MAX_POOL_SIZE integer! 11

MAX_POOL_SIZE 90000 11

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A

iv

MIN_POOL_SIZE integer! 11

MIN_POOL_SIZE 1500 11

TARGET_POP_SIZE integer! 11

TARGET_POP_SIZE 100000 11

Dataset Generation! 12

Case/Control! 12

DATASET CC label affected unaffected genotype_error phenocopy missing! 12

DATASET CC sample-01 500 500 0.05 0.1 0.15 12

Pedigree Data! 12

DATASET PED label genotype_error phenocopy missing! 12

DATASET PED family-01 0.05 0.1 0.15 12

DATASET FAMTYPE affected unaffected extra_sibs number_of_families! 12

DATASET FAMTYPE 1 1 1 250 12

DATASET FAMTYPE 1 0 0 150 13

DATASET FAMTYPE 2 1 0 75 13

DATASET FAMTYPE 1 0 3 50 13

General Data-set Configuration Parameters! 13

DATASET_COUNT integer! 13

DATASET_COUNT 500 13

BINARY_DATASETS Yes/No! 13

BINARY_DATASETS Yes 13

USE_STD_PEDIGREE_HEADER on/off! 13

USE_STD_PEDIGREE_HEADER On 13

Locus Searching! 14

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A

v

LOCUS_SELECTOR label float float float integer integer integer de-
scription! 14

LOCUS_SELECTOR rare_loci 0.2 0.15 0.23 4 2 10 The following loci are
moderately rare and appear in a block 14

ADD_REGION label snp_start snp_stop! 14

ADD_REGION rare_loci rs-321412 rs-543231 14

MAX_LOCI_PER_CHROM_REPORTED Integer! 14

MAX_LOCI_PER_CHROM_REPORTED 50 14

Disease Modeling! 15

Penetrance Table Disease Models! 15

DEFINE_MODEL PENTABLE INDEX pen-file chrom-id snp-id [chrom-id snp-
id, ...]! 15

DEFINE_MODEL PENTABLE INDEX disease.pen 1 5 15

DEFINE_MODEL PENTABLE LABEL pen-file snp-label [snp-label, ...]! 15

DEFINE_MODEL PENTABLE LABEL disease.pen RL5 15

Penetrance File Configuration! 15

FREQ_THRESHOLD Float! 15

FREQ [AaBbCcDd....etc] float! 15

FREQ A 0.2 15

FREQ a 0.8 15

PENTABLE! 16

model-identification penetrance! 16

AABB 0.171 16

AABb 0.155 16

Purely Epistatic Models with simPEN! 16

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A

vi

DEFINE_MODEL SIMPEN INDEX simpen-cfg chrom-id snp-id [chrom-id snp-
id, ...]! 16

DEFINE_MODEL SIMPEN INDEX disease.simpen 1 5 16

DEFINE_MODEL PENTABLE LABEL simpen-cfg snp-label [snp-label, ...]! 16

DEFINE_MODEL PENTABLE simpen-cfg disease.pen RL5 16

simPEN File Configuration! 16

HERIT float! 16

HERIT 0.01 16

HERITWEIGHT float! 16

HERITWEIGHT 10 16

ODDSRATIO float! 16

ODDSRATIO 1.25 16

ODDSWEIGHT float! 17

ODDSWEIGHT 1 17

MARGVAR float! 17

MARGVAR 0.0000001 17

MARGWEIGHT float! 17

MARGWEIGHT 100 17

PENTARGET float! 17

PENTARGET 0.15 17

GEN 15000! 17

POPSIZE 1000! 17

DEMES 100! 17

MUTATE 0.01! 17

CROSS 0.6! 17

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A

vii

SUBMODELS ON! 17

UPDATE 100! 17

LOCI 2! 18

FREQ 0.2 0.8! 18

Main Effects and Interactions with SIMLA! 18

DEFINE_MODEL SIMLA INDEX simla-cfg float int chrom-id snp-id
MIN|MAJ float float [...]! 18

DEFINE_MODEL SIMLA INDEX interactions.simla 0.05 2 1 5 MIN 0.26 0.0 18

DEFINE_MODEL SIMLA LABEL simla-cfg float int snp-label MIN|MAJ float
float [...]! 18

DEFINE_MODEL SIMLA LABEL interactions.simla 0.05 2 RL5 MIN 0.26 0.0 18

SIMLA configuration file! 18

1x2x3 0.26 18

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A

viii

Introduction
Purpose of this manual

Contained within this manual are details for configuring and running the application, genomeSIMLA. If this is your
first time to use the software, we highly recommend that you take a few minutes to download and work through one
or more tutorials. Then, once familiar with the capabilities of the software, users can refer to this guide when making
changes to the basic configuration settings.

Conventions Used

There are two conventions used throughout this document. These text conventions are intended to help distinguish
examples from configuration parameters.

Random Numbers

genomeSIMLA uses an open source implementation of the mersenne-twister pseudo random number generator
available at http://agner.org/random. When using genomeSIMLA to generate data, the following should be kept in
mind in order to ensure that products are as reproducible as possible:

• At the beginning of execution of any kind (population initialization, generational advancement, dataset ex-
tract, etc) the random seed will be set.

•

Configuration details are listed first in bold- left aligned with the rest of the text.

The first word(s) are the keywords which specify what is being changed. Each keyword (or phrase) has some number
of parameters. These are listed in the order they should appear in the configuration line. In some cases, parameters
can be repeated or are optional. Those are denoted inside []s.

Configuration details are generally followed immediately by an example line:

! This is an example

Examples show how an actual entry would look and are followed by some descriptive information to help the user
understand how the example would affect genomeSIMLA’s runtime.

Common Parameters

There are a number of parameters which are used commonly across multiple configuration settings. In order to sim-
plify the descriptions of the various properties of each command, we’ll describe those properties here, and just refer
to them as if they were a type.

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

1

http://agner.org/random
http://agner.org/random

Integer

Parameters specified in this way just simply refer to a whole number. In general, these values should be equal to or
greater than 0, except when specified otherwise.

Float

Values specified as float are decimal values.

Index

If a parameter is listed as an index, it refers to the index, starting at 1 the user wishes to select.

max

This is generally an integer value representing the upper bound of some value. In some cases, such as minor allele
frequency, it might represent a floating point value.

min

This is generally an integer value representing the lower bound of some value. In some cases, such as minor allele
frequency, it is possible that it represents a floating point value.

On/Off

These parameters accept a boolean, Yes/No type setting. Users can use ON/OFF or YES/NO to set them.

filename

When a configuration refers to a file for input or output, the filename is generally used. This can be either a fully
qualified path (such as /home/torstees/wga) or it can specified as a path relative to the directory where the applica-
tion was run (such as ../data/goodfilename). It can also be just a plain filename as long as the file itself is available
from the directory in which the application was run.

label

A label refers to a parameter whose value can be any text string without whitespace. These labels are generally used
for reporting but in many cases are used to determine filenames. As a result, users should avoid using unusual char-
acters in the string that could possibly cause problems with filenames. Because spaces and tabs are used to separate
each parameter on a given line, labels can not contain spaces.

description

A description is a chunk of text that can contain spaces. It will always be at the very end of a line and is generally
optional.

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

2

Using genomeSIMLA
Except in very specific cases, generating data-sets with genomeSIMLA is a multistep process. At the very least, users
must run genomeSIMLA forward through time performing at least 1 drop along the way. It is this drop that the user’s
data-sets will be drawn from. In addition to generational advancement and data-set production, genomeSIMLA can
pick up from a specified generation and advance further through time, or perform “complete” LD analysis.

To control genomeSIMLA in this way, we offer a small number of different parameters to give the user control over
genomeSIMLA’s behavior. It is important to note that a handful of these parameters must appear in a certain order
(those that lack a -T flag, where T is some parameter designator).

Command-Line Arguments

genomeSIMLAs config-file [ld|datasets] [-p project-name] [-l Integer] [-d Integer Integer Integer] [-s Integer]

Config-file

Specifies the filename to be used to control genomeSIMLAs overall specific behavior. If the configuration is available
from within the current working directory, the filename alone is sufficient. If the filename exists in another directory,
a fully qualified or relative path should be provided along with the filename itself.

ld (optional)

When the ld command is present, no generational advancement will be performed, and complete LD analysis will be
performed on the specified pool. If no generation is specified via the -l flag, generation 0 is assumed. All other com-
mands are ignored in the presence of this flag.

datasets (optional)

When the datasets command is present, no generational advancement will be performed, and data-sets will be draws
from the specified pool. If no generation is specified via the -l flag, generation 0 is assumed. All other commands are
ignored in the presence of this flag.

-p project-name (optional)

Specifying a project name allows the user to override the nature behavior of using the name of the configuration file
as the base name for all of the products generated by execution. This can include a relative or fully qualified path, as
long as a base filename is present (i.e. data/affy or /home/torstees/simulated_data/affy) All files generated will
start with this string.

-l generation-to-load (Integer) (optional)

Specifies the generation to load. This assumes that a previous run has been completed, and pools at the specified gen-
eration were created.

-d first-generation-to-drop generations-between-drops drop-count (optional)

This allows the user to override the drop configuration found in the configuration file.

-s seed (integer)

Allows the user to override the seed specified in the configuration.

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

3

General Parameters
The following parameters control the basic behavior of the application.

SEED integer

SEED 23125

Sets the seed for all random number calls. Seeds can range from 0 - 4.2 billion.

Drop Points

Drop points are points in simulated time (generations) where the entire contents of the pool(s) is written to disk and
analyzed. Reports are produced in HTML format to help the user to interpret the current state of the pool. Drop
points are designed to allow the user to track the state of LD within the population. If the population is large enough,
any drop point can be the source for dataset generation.

The reports initially written for a given generation are done using sampling. Prior to selecting loci for modeling dis-
eases, users are expected to extract detailed reports from the generation of interest.

FIRST_DROP_POINT integer

FIRST_DROP_POINT 500

Sets the first drop point to be performed at generation 500.

DROP_FREQUENCY integer

DROP_FREQUENCY 100

Causes genomeSIMLA to drop every N generations once it has reached the initial drop point. The example says to
drop every 100 generations.

DROP_COUNT

DROP_COUNT 5

Indicates the total number of drops to be performed (including the initial drop). If we look at all three of the previous
DROP related examples, genomeSIMLA would perform 5 drops at generations: 500, 600, 700, 800 and 900.

It should be noted that the calling parameters can change how drop points are interpreted.

Graphical Plot Settings

The following general parameters control various aspects of the graphical reporting during a given drop.

MAX_SNPS_PER_ROW integer

MAX_SNPS_PER_ROW 3000

In order to render a general overview of an entire chromosome, it is necessary to set a maximum number of SNPS
which can be drawn on a single row. This is not a hard setting- more of a suggestion. genomeSIMLA will distribute
the SNPS evenly on all rows in order to avoid having a small chunk at the bottom.

BLOCK_REPORT_SIZE integer

BLOCK_REPORT_SIZE 30

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

4

Determines the number of detailed blocks that are reported. Each report takes disk space as well as time to generate.
If your configuration is set to use 22 chromosomes with a report size of 30, there will likely be over 1200 charts drawn
and a fair amount of information added to the final report. However, if the settings are too small, it might be more
difficult to find the preferred SNP.

Each Block Report consists of 2 graphs. The first is expected to be smaller (fewer SNPS on either side of the block of
interest). The second is generally zoomed out to show a bit more of the surrounding SNPS.

FONT filename

FONT ./FreeMonoBold.ttf

genomeSIMLA requires access to a true type font in order to write labels and details onto the graphical portions of
the reports. This font should be available to genomeSIMLA during execution time. If the file can’t be found, there
will be a large amount of warnings rendered to STDOUT and none of the graphs will have any textual information
on them- but execution will continue.

CSS_FILENAME filename

CSS_FILENAME ../genomesimla.css

In order to make the reporting flexible, each report refers to a stylesheet which contains the necessary information
about shading spacing and other information. An example stylesheet is provided with the application as well as each
of the examples. Users are welcome to change this to suit their needs- and should be aware that editing the stylesheet
does not require anything be done with genomeSIMLA. However, it is necessary that the stylesheet be found, as
stated in the configuration file when the reports are read.

The example above indicates that there will be a file named genomesimla.css that resides in the directory above the
one in which the report is read from. In other words:

If there is a report named: /home/torstees/genomesimla/data/test1.index.50.html

And I used the setting from the example above, the following file must exist:
/home/torstees/genomesimla/genomesimla.css.

If I copy the report (s) to a new filesystem, I should be sure to copy the style-sheet to the parent directory of the new
location.

If the style-sheet isn’t found, the report will just be harder to read.

LD_REPORT_BUFFER_SIZE On/Off

LD_BUFFER_SIZE 50

This sets the number of SNPS around the block in the detailed plot. In the example above, 50 SNPS on either side of a
block are drawn.

WRITE_LD_REPORT On/Off

WRITE_LD_REPORT On

Causes genomeSIMLA to produce a complete complete report of the pairwise LD values. Users should be aware that
this file can be very large.

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

5

DRAW_RSQUARED_PLOTS On/Off

DRAW_DPRIME_PLOTS On/Off

DRAW_RSQUARED_PLOTS Off

By default, both RSquared and DPrime plots are drawn. If the user wants to save time and disk space, they can opt to
one or both charts off.

MAX_SNP_DISTANCE integer

MAX_SNP_DISTANCE 500000

This allows the user to determine far apart SNPs can be before genomeSIMLA decides to calculate LD values. Lower-
ing this value from the default (500K) can speed up LD processing.

CLOSE_POOLS_BETWEEN_DROPS On/Off

CLOSE_POOLS_BETWEEN_DROPS On

In general, it is assumed that genomeSIMLA will be used to produce very large populations (~1 million unique
chromosomes) with genomes that approach 500K. In order to manage this on a single computer, genomeSIMLA must
close pools down when they aren’t currently in use. This frees up valuable memory- allowing us to do this without
gigabytes of ram. However, it can slow down processing when only one or two small chromosomes in use.

FAST_LD_POOL_SIZE integer

FAST_LD_POOL_SIZE 3000

Sets the number of chromosomes that are used in sampled plots. If this is larger than the population, the entire popu-
lation is used.

FAST_LD_PLOT_SIZE

FAST_LD_PLOT_SIZE 10000

Sets the max number of SNPs used in sampled LD production. If the size is greater than a given chromosome, the
entire chromosome is used.

NO_FASTLD

NO_FASTLD

Unlike most other options, this takes no parameters. When it is encountered, genomeSIMLA will skip the sampled
LD calculations and instead render only complete LD plots. Please be aware that this will increase the length of time
during a growth scan where you are unsure where the best generation to draw from lies. It should be used only when
you either know ahead of time what your LD will look like, or you want to get statistics on the entire population at
every drop.

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

6

Locus Generation
genomeSIMLA allows for the creation of chromosomes in two different ways. The first involves the description of one
or more block types and populating a chromosome randomly with one or more of these blocks. The other approach
uses a locus description file containing positional SNP names and positional information.

Block Based Locus Generation

Block based generation is the production of chromosomes using completely random draws. The user specifies one or
more block configurations which will be applied randomly to create the loci on a given chromosome. There are 3
elements involved in this process:

Block Definitions: These describe 4 things:

• Min/Max number of snps that can be associated with the “block”

• Min/Max recombination fraction for the first SNP (how far away is that SNP from the previous SNP on
the chromosome)

• Min/Max recombination fraction for each of the containing snps.

• Probability this block will be drawn

When a chromosome draws a block definition to be used to construct a set of loci, it will randomly drawn the number
of SNPs based on the block Min/Max value. Then, for each SNP, it will determine the distance between each SNP and
it’s predecessor. All but the first SNP use the second set of Min/Max recombination values. The first SNP is drawn
from the first set. This allows the user to space the block further out from the SNPs in front of it (or not).

Default Block: When a chromosome is deciding which block definition to use next, it uses the probabilities associ-
ated with the blocks. It is possible for the sum to be less than 1.0. The difference between the sum and 1.0 is the prob-
ability that the default block will be used. The default block is common to ALL chromosomes, and should be defined
before any other blocks or chromosomes. With the exception of probability, the default block has the same parameters
as regular blocks.

Chromosome: To create a block based chromosome, users will use the ADD_CHROMOSOME command, indicating
how many blocks to draw and possibly giving it a label. The user then applies blocks to the chromosome by using
the ADD_BLOCK command.

When the draws are made, the blocks associated with a given chromosome will be drawn based on their probability
(including the possibility of using the default block, if necessary).

DEFAULT_BLOCK min max float float float float

DEFAULT_BLOCK 5 10 0.01 0.015 0.00001 0.000025

The default block is used when the sum of a given chromosome’s blocks probabilities don’t sum up to 1.0. Otherwise,
it is the same as a regular block.

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

7

The first two parameters specify the minimum and maximum number of SNPS will be created. The next two repre-
sent the range of distance this block falls from the previous SNP on the chromosome. The last two represent the range
of distances of SNPS within the block itself.

DEFAULT_BLOCK should be set prior to the definition of any chromosomes (and thus, any other blocks).

ADD_CHROMOSOME integer label

ADD_CHROMOSOME 5 chromosome_1

Adds a new chromosome to the genome. The first parameter represents how many blocks to draw and the last (op-
tional) parameter is the label that will be used in naming files and on the reports. The example above will create a
chromosome with 5 blocks named “chromosome_1”.

ADD_BLOCK chr_idx snp_idx float float float float float

ADD_BLOCK 5 10 0.0001 0.0002 0.000001 0.00001 0.5

Adds a block definition to the most recently defined chromosome (using ADD_CHROMOSOME). The example above
will create a block that ranges from 5 to 10 SNPs. 0.0001 and 0.0002 represent the chance of a cross-over event occur-
ing between the previous SNP (if one exists) and the first in the block. This effectively describes how far away from
that last SNP the block is.

The next two describe the chance of a recombination occurring between any two SNPs found inside the block itself.

The last parameter is the probability this block will be drawn.

Other Block Related Settings

DEFAULT_ALLELE_FREQ float float

DEFAULT_ALLELE_FREQ 0.1 0.5

This allows the user to define min/max allele frequencies to be used during the configuration of a new block based
chromosome.

File Based Chromosome Configuration

File based chromosome files have all of the information necessary to simulate a chromosome. There are two reasons
one would use such files:

1. To mimic one or more region from a real genome.

2. To precisely control a region’s density as part of a research project.

The Ritchie Lab has made a set of these files available which represent a large portion of the Affymetrix 500K cover-
age. As we produce others, it is expected they will be made available for use as well. These files allow for SNPs to be
distributed very similarly to real human assays- though, the actual LD patters will depend largely on the generations
the data-sets were extracted from as well as the random seed used.

 Locus File Format

Line #1 is just a line used to describe which chromosome the file was derived from. This is ignored when the file is
read

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

8

Line #2:! Indicates the number of loci contained within the file. genomeSIMLA doesn’t actually parse that number
out- so again, this line is not used for reading.

Line #3:!Column Headers. This is for the user’s beneift...and is not used during reading

Line #4...N+3:! Each line describes a single locus. The following represent the 6 columns that should be present (in
the order listed). Each column must have a value for each line, and should be seperated by whitespace (multiple
spaces or tabs is fine).

Col #1:! ! Label! ! ! ! This is usually the RS Number. However it can be any label
one wants to use. All SNPS must have unique labels.

Col #2:! ! Freq Allele 1:! ! ! Allele 1’s allele freqency

Col #3:! ! Freq Allele 2:! ! ! Allele 2’s allele frequency

Col #4:! ! Recombination Fraction:! ! Chance that an odd number of recombinations took place be-
tween this SNP and the previous SNP in the genome.

Col #5:! ! Position:!! ! ! This is the physical position on the chromosome (relative to the
beginning of that chromosome...NOT the genome) These values should be in base pairs.

Col #6:! ! Description (optional):! ! This is just a note that can be added. Currently, this isn’t used
anywhere.

The last line of the file should be an empty line (the last entry should contain a return character).

It should be noted that when genomeSIMLA sets up the loci, allele 1 is ALWAYS the minor allele, regardless of the
locus’ frequency in the file. This is only important if a user were to draw datasets from a pool at generation 0. Their
interpretation of ‘A’ and ‘a’ could be different from the way genomeSIMLA. When drawing data-sets from generation
0, ‘A’ is ALWAYS the minor allele.

Also, allele frequencies are not exact, even in large populations. When one is setting up a disease model for genera-
tion 0, it is recommended to let genomeSIMLA create the pool, drop generation 0 (it defaults to this) and assign
model loci based on allele frequencies found in the locus file generated during the initialization.

Locus Miscellany

ALLELE_FREQUENCY chr_idx snp_idx float float

ALLELE_FREQUENCY 1 5 0.25 0.75

This sets the frequency of allele 1 of Snp # 5 on chromosome 1 to 25% and the second allele to 75%.

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

9

Population Control
Currently, there is a single population in genomeSIMLA, though each individual could have several different chro-
mosomes. This population is grown using one of several growth rates. During a generational advancement, indi-
viduals are drawn (with replacement) from the current population, mated using Hardy-Weinburg mating and added
to the new pool until it reaches it’s target size.

Growth rates share many parameters. Below is a list of parameters that are used in each of the growth curves.

intial_population integer The population that is created at generation 0.

variation float This value is used to simulate imperfect growth
curves. It represents the percentage of fluctuation
around the curve’s value at a given generation. The
amount of fluctuation is actually +/- 1/2 the varia-
tion- so it is possible that the population at generation
N+1 be smaller than at N.

growth_rate float This is the rate of growth. While it is applied differ-
ently for each model, the higher the growth-rate, the
faster the growth.

carrying_capacity integer This is used in logistic style growths and specifies the
ceiling of the growth curve. As the population ap-
proaches this value, it becomes less and less exponen-
tial in nature until it becomes static.

time_of_max_growth integer Used only in Richard’s Logistic, this parameter effec-
tively moves the exponential part of an S curve about
on the X axis (in the direction of the generation speci-
fied.

polarity float Used only in Richard’s Logistic, this parameter affects
the “draw” of the curve toward the carrying capacity.

To set up a growth rate, the user should configure one of the following:

GROWTH_RATE LINEAR initial_population variation growth_rate

GROWTH_RATE LINEAR 30000 0.05 10.0

This is just a straight line that grows by growth_rate each generation

GROWTH_RATE EXPONENTIAL initial_population variation growth_rate

GROWTH_RATE EXPONENTIAL 700 0.05 0.3

This is just a basic exponential growth based on the growth rate specified.

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

10

GROWTH_RATE LOGISTIC initial_population variation growth_rate carrying_capacity

GROWTH_RATE LOGISTIC initial_population variation growth_rate carrying_ca-
pacity

This is considered to be one of the preferred models for describing growth rates. The carrying capacity represents the
peak potential (which could be caused by various reasons). For our needs, it is the size of pool required for drawing
data-sets.

GROWTH_RATE RICHARDS initial_population variation growth_rate carrying_capacity time_of_max_growth
polarity

GROWTH_RATE LOGISTIC initial_population variation growth_rate carrying_ca-
pacity time_of_max_growth polarity

Richard’s logistic is just an enhanced logistic curve- with two parameters capable of determining when growth starts
and just how steep the growth will be.

By pushing the time_of_max_growth forward, the population hovers at initial_population for some amount of time.
This small population will produce rich LD patterns which tend to be carried forward in time once growth begins.
However, this small population increases the risk of fixing alleles dramatically.

General Growth rate parameters

MAX_POOL_SIZE integer

MAX_POOL_SIZE 90000

Sets the hard upper limit for population size. Every generation is compared against this value and can NEVER exceed
it, regardless of variation nor growth curve details. It is very important for non-logistic growth rates, especially expo-
nential, where growth could occur very fast and cause memory problems.

MIN_POOL_SIZE integer

MIN_POOL_SIZE 1500

Sets the semi-hard lower limit for population size. This is evaluated for all generations other than 0. So, it is possible
to set the initial population to below MIN_POOL_SIZE and cause a hard spike in population at generation 1.

TARGET_POP_SIZE integer

TARGET_POP_SIZE 100000

If TARGET_POP_SIZE is greater than 0, genomeSIMLA will use the value as a hard limit for advancement- once it
reaches the specified population size all advancement and population growth will cease.

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

11

Dataset Generation
The entire purpose of genomeSIMLA is data. genomeSIMLA is capable of generating 2 types of data-sets: case/
control and basic pedigrees. genomeSIMLA can produce any number of different data-sets and guarantees that, in an
truly diverse population, no single individual will be used in any data-sets generated during a single run.

Both pedigree and case/control data-sets allow for the use of a label. This label is used as part of the filename, and
allows the user to quickly recognize different data-sets. These labels can have any character except slashes and
spaces.

Both types of data-sets can have the following types of error:

genotype_error float Exact Portion of SNPs which
are not derived via cross-
over. This error is applied
evenly across SNPs

phenocopy float Percentage of the affected
individuals in a given data-
set whose affected status
was determined not by the
chosen model.

missing float Percentage of SNPs that will
be missing.

Case/Control

DATASET CC label affected unaffected genotype_error phenocopy missing

DATASET CC sample-01 500 500 0.05 0.1 0.15

This line creates datasets with 500 affected, 500 unaffected each with 5% genotype error and 15% missing data. Of the
500 affected individuals, 50 of them will not have been evaluated with the model.

Pedigree Data

Pedigree data is slightly more complicated because you can specify multiple types of family structures to be added to
your dataset. The affected/unaffected numbers simply describe the number of children in those categories.

DATASET PED label genotype_error phenocopy missing

DATASET PED family-01 0.05 0.1 0.15

This sets up a framework for datasets with 5% genotype error and 15% missing data. 10% of all affected children will
not have been evaluated with the disease model.

This just sets up the data-set framework. Until you add family types to it, the data-sets will be empty.

DATASET FAMTYPE affected unaffected extra_sibs number_of_families

DATASET FAMTYPE 1 1 1 250

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

12

This sets up a type of family which will be added to the data-set. A given data-set can have as many different types of
families as the user needs. The affected/unaffected counts represent the number of affected/unaffected children a
given family MUST have. The number of extra sibs indicates that a random number from 0 to extra_sibs will be
added to the family. All children will be evaluated for status, however, by adding extra sibs, you can have larger
families which vary by the number of affected siblings.

It is perfect acceptable to have 0 extra_sibs or unaffected sibs. Affected sibs MUST be greater than or equal to 1.

DATASET FAMTYPE 1 0 0 150

This would add 150 trios to the data-set.

DATASET FAMTYPE 2 1 0 75

This would add 75 AAU families to the data-set.

DATASET FAMTYPE 1 0 3 50

This would add 50 families with between 1 and 4 children with at least 1 affected sib in them.

Parent’s status is evaluated and written to the dataset, but is not considered for determining whether or not the fam-
ily will be included into the dataset.

Peformance Note: It is important to note that pedigrees with more than 1 affected individual can be computationally difficult.
Children are created by actually crossing over the parents just like is done during generational advancement. If the children don’t
meet the necessary family shape, all individuals are thrown away. For instance, for a disease with a prevalence of 0.1, it would
take the production of almost 1,000,000 families before we found a family with 2 affected sibs and it gets worse as you add in
more required affected sibs. Most data-sets can be generated in a few minutes, but be aware of the possibility of long delays for
large numbers of affected sibs and rare disease models.

General Data-set Configuration Parameters

DATASET_COUNT integer

DATASET_COUNT 500

This indicates the number of files that will be created per data-set. In this example, all data-sets created by this con-
figuration would result in 500 unique files.

BINARY_DATASETS Yes/No

BINARY_DATASETS Yes

This compresses data-sets dramatically, allowing whole genome size data-sets to occupy a minimal amount of disk-
space. This format was developed in-house, and won’t be supported by any products other than those produced at
the lab here (and only now are we beginning to implement it in our own applications).

If you are interested in the format, we will make the format available on the wiki in the near future. In the meantime,
feel free to contact us at genomeSIMLA@chgr.mc.vanderbilt.edu.

This is currently not supported for pedigree datasets.

USE_STD_PEDIGREE_HEADER on/off

USE_STD_PEDIGREE_HEADER On

When on, all pedigree data-sets will have 10 column headers. When off, the header count will be 6 columns.

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

13

mailto:genomesimla@chgr.mc.vanderbilt.edu
mailto:genomesimla@chgr.mc.vanderbilt.edu

Locus Searching
The main goal for genomesimla is the production of realistic data-sets. These might be very large, and choosing dis-
ease loci can be a daunting task when presented with over 200,000 possible loci. To make the task as easy as possible,
genomeSIMLA can limit the loci presented and present them in a sorted fashion where the topmost SNP shown most
closely matches the user’s specifications.

The following commands are used to set up searches. Users can have as many searches as they like...even if they
don’t need them all for setting up their models.

A search describes 3 qualities: minor allele frequency ranges, types of blocks the SNP is contained within and loca-
tion. Each of the ranges contains three pieces. Target Min and Max. Currently, LOCUS_SELECTOR has 2 ranges: mi-
nor_allele_frequency and block_size.

LOCUS_SELECTOR label float float float integer integer integer description

LOCUS_SELECTOR rare_loci 0.2 0.15 0.23 4 2 10 The following loci are
moderately rare and appear in a block

This creates a new search called rare_loci which will only contain SNPs whose minor allele frequency is between 0.15
and 0.23 and are found in blocks of up to 10 SNPs large.

The SNPs will be ranked so that those that are closest to a minor allele frequency of 0.2 and in blocks with 4 SNPs will
be ranked first. Notice that the min/max values are not evenly distributed around the target. The score is ranked on
the relative distance from the target for that particular arm. So, a SNP with a minor allele frequency with just a bit
larger MAF than 0.2 would score very similarly to one that had a MAF of just under 0.23.

The block size and MAF weights are different. MAF is more currently weighted higher than block size. However,
each block a SNP is found in will add more to it’s final score- meaning it will rise higher in the report.

The description of a LOCUS_SELECTOR gets used in the locus report. Be descriptive as is necessary. However, there
can be no newline characters in it. Spaces are allowed, though.

ADD_REGION label snp_start snp_stop

ADD_REGION rare_loci rs-321412 rs-543231

This adds a region to the selector, rare_loci. This region is bounded by the two SNPs rs-321412 and rs-543231. Both
SNPs must be found and exist on the same chromosome.

By default, all searches are performed over the entire genome. However, if a user wishes to restrict the region to
search, they can do so by adding regions (once you add a single region, it will only search the regions that have been
added). To add a whole chromosome, simply add the first and last SNP geographically.

MAX_LOCI_PER_CHROM_REPORTED Integer

MAX_LOCI_PER_CHROM_REPORTED 50

Instructs genomeSIMLA to report at most N loci per chromosome for each sector described. Loci are ranked accord-
ing to how well they fit the criterion, which could possibly be rather extensive. By setting this value to a reasonable
number, the locus report can be kept at a manageable size. Setting the value to -1 will catch all possible matching loci.

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

14

Disease Modeling
genomeSIMLA comes with 3 options for modeling affection status: User generated Penetrance tables, simPEN
(purely epistatic models) and SIMLA (main effect + interactions). Each method requires it’s own configuration details.

Penetrance Table Disease Models
Users can use predefined penetrance tables to assign status to models. The only requirement is that the user specify
the allele frequencies associated with each possible allele associated with each model locus. This is to help ensure that
the appropriate meaning of a given cell is being applied. genomeSIMLA will not proceed to use a model if the actual
allele frequencies differ too much from those specified in the configuration.

Users indicate to genomeSIMLA that a penetrance based model is to be used using a line similar to one of the two
lines below.

DEFINE_MODEL PENTABLE INDEX pen-file chrom-id snp-id [chrom-id snp-id, ...]

DEFINE_MODEL PENTABLE INDEX disease.pen 1 5

DEFINE_MODEL PENTABLE LABEL pen-file snp-label [snp-label, ...]

DEFINE_MODEL PENTABLE LABEL disease.pen RL5

Both lines do the same thing. The first tells genomeSIMLA to load the penetrance table in disease.pen and use Locus 5
on chromosome 1 as the single disease locus. The contents of the specified penetrance table must match the number
of model loci specified on the configuration line. Otherwise, genomeSIMLA will generate an error (or worse, become
confused and generate misleading data-sets.)

The second example simply uses labels to specify which loci are to be associated with the disease model. Block based
chromosomes (see BLOCK_DEFINITION) are labeled RLN where N is a number between 1 and however many loci
there are associated with all chromosomes being simulated. Otherwise, the labels are based on information found
inside the locus files that were used to populate the simulation (most likely, this will be an RS number). There can be
no duplicately labeled SNPs.

Penetrance File Configuration

A small number of parameters make up the configuration details of a penetrance file. All but the threshold must be
fully specified even if the value is 0.0.

FREQ_THRESHOLD Float

Specifies maximum allowed variation from the allele frequencies that will be tolerated before execution is halted.

FREQ [AaBbCcDd....etc] float

FREQ A 0.2
FREQ a 0.8

Using letter notation for specifying penetrance cells, this command allows the user to tell genomeSIMLA what the
intended frequency for a given allele should be. The user MUST specify all alleles that are expected to be involved in
the given model.

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

15

PENTABLE

This just indicates to genomeSIMLA That the various penetrances are about to follow.

model-identification penetrance

AABB 0.171
AABb 0.155

Each possible combination must be present, regardless if it’s value is anything other than 0.0.

Penetrance tables should be written as a separate file from the main configuration.

Purely Epistatic Models with simPEN
simPEN is a method for using a Genetic Algorithm (GA) to evolve purely epistatic models. With few exceptions, the
configuration details are considered to be beyond the scope of this document, however, a few details will be covered,
such as those that specify target odds ratios and heritability.

Users indicate to genomeSIMLA that a penetrance based model is to be used using a line similar to one of the two
lines below.

DEFINE_MODEL SIMPEN INDEX simpen-cfg chrom-id snp-id [chrom-id snp-id, ...]

DEFINE_MODEL SIMPEN INDEX disease.simpen 1 5

DEFINE_MODEL PENTABLE LABEL simpen-cfg snp-label [snp-label, ...]

DEFINE_MODEL PENTABLE simpen-cfg disease.pen RL5

Both lines do the same thing with the exception of how they specify which loci are to be associated with the model.

The configuration file for simpen must be a separate file. When deciding which weights are most appropriate, users
should keep in mind that the values themselves can differ drastically, and a weight of 1 differs in effectiveness for a
value whose target is 0.1 than that of a value whose target is 0.000001. The values used in the following examples
were determined to be reasonable starting points for obtaining good results from the simPEN module.

simPEN File Configuration

A small number of parameters make up the configuration details of a simpen configuration file.

HERIT float

HERIT 0.01

Specifies that the target heritability will be 0.01.

HERITWEIGHT float

HERITWEIGHT 10

Adjusting the weight determines how important the attribute is.

ODDSRATIO float

ODDSRATIO 1.25

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

16

ODDSWEIGHT float

ODDSWEIGHT 1

MARGVAR float

MARGVAR 0.0000001

Set the target Marginal variance. This determines how pure of an epistatic model you want. The higher the values,
the more likely there will be main effects.

MARGWEIGHT float

MARGWEIGHT 100

PENTARGET float

PENTARGET 0.15

Specifies the target prevalence of the disease.

The following parameters are associated with the GA portion of simPEN. For more information about how to use
these parameters, please see the simPEN user’s manual (available at the genomeSIMLA website. References to pool
sizes, generations, populations and mutation below are completely unrelated to the simulation being performed by
the forward time simulation.

GEN 15000

Number of generations to be tried before ending.

POPSIZE 1000

The search population.

DEMES 100

Multiple pools of penetrance values

MUTATE 0.01

Frequency of mutation

CROSS 0.6

Rate of cross over (1 per “genome”)

SUBMODELS ON

Turning this on will possibly catch a pattern where a smaller model contained within a larger model does exist with
enough strength as to represent a potential problem.

UPDATE 100

Specifies how many generations between progress is reported

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

17

http://chgr.mc.vanderbilt.edu/genomeSIMLA
http://chgr.mc.vanderbilt.edu/genomeSIMLA

The following two parameters are legacy and have no effect on the production of valid models. However, the error
checking currently requires them to be present. Just use these values to satisfy the error checking code for now.

LOCI 2

FREQ 0.2 0.8

Main Effects and Interactions with SIMLA
SIMLA is a simulation program that allows the researcher to specify varying levels of both linkage and linkage dise-
quilibrium among and between markers and disease loci. SIMLA was specifically designed for the simultaneous
study of linkage and association methods in extended pedigrees, but the penetrance specification algorithm can also
be used to simulate samples of unrelated individuals (e.g., cases and controls).

Users indicate to genomeSIMLA that a SIMLA based model is to be used using a line similar to one of the two lines
below.

DEFINE_MODEL SIMLA INDEX simla-cfg float int chrom-id snp-id MIN|MAJ float float [...]

DEFINE_MODEL SIMLA INDEX interactions.simla 0.05 2 1 5 MIN 0.26 0.0

DEFINE_MODEL SIMLA LABEL simla-cfg float int snp-label MIN|MAJ float float [...]

DEFINE_MODEL SIMLA LABEL interactions.simla 0.05 2 RL5 MIN 0.26 0.0

Both lines do the same thing with the exception of how they specify which loci are to be associated with the model.

The filename specified by simla-cfg represents the list of interactions (see below). If no interactions are required, you
may use the keyword, NO_INTERACTIONS- otherwise, the file must exist. The next number (0.05 in the example
above) is the target prevalence. The last parameter before the loci is the maximum interaction size. This is just maxi-
mum number of loci that will be interacting with one another.

The MIN/MAJ value determines whether the disease is associated with the minor or major allele. The next parameter
specifies the beta value associated with that locus. Finally, the last value required for each locus is the type. A 0.0 rep-
resents a recessive trait. The locus becomes more dominant as it approaches 1.0. Each locus to be considered must
have each of these parameters (locus specification, MIN|MAJ, beta and type).

SIMLA configuration file

The simla-cfg is just a file that specifies the beta values associated with each of the interactions desired. For each in-
teraction, specify them in the following way:

1x2x3 0.26

This tells genomeSIMLA that the 1rst, 2nd and 3rd locus (in the order they are encountered on the DEFINE_MODEL
line) interact with a beta value of 0.26. Users can add as many or as few interactions as they wish.

R i t c h i e L a b S o f t w a r e! g e n o m e S I M L A - R e f e r e n c e

18

