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ABSTRACT
Motivation: Machine learning methods and in particular random
forests (RFs) are a promising alternative to standard single SNP
analyses in genome-wide association studies (GWAS). RFs provide
variable importance measures (VIMs) to rank SNPs according to their
predictive power. However, in contrast to the established genome-
wide significance threshold, no clear criteria exist to determine how
many SNPs should be selected for downstream analyses.
Results: We propose a new variable selection approach, recurrent
relative variable importance measure (r2VIM). Importance values
are calculated relative to an observed minimal importance score for
several runs of RF and only SNPs with large relative VIMs in all of
the runs are selected as important. Evaluations on simulated GWAS
data show that the new method controls the number of false-positives
under the null hypothesis. Under a simple alternative hypothesis with
several independent main effects it is only slightly less powerful than
logistic regression. In an experimental GWAS data set, the same
strong signal is identified while the approach selects none of the
SNPs in an underpowered GWAS.
Availability: The approach is implemented as a R package called
r2VIM (available at http://research.nhgri.nih.gov/software/r2VIM).
Contact: jebw@mail.nih.gov; szymczak@medinfo.uni-kiel.de

∗to whom correspondence should be addressed

1 INTRODUCTION
In the last few years, genome-wide association studies (GWAS)
have identified more than one thousand single-nucleotide polymor-
phisms (SNPs) that are reproducibly associated with more than two
hundred phenotypes and quantitative traits (Hindorff et al., 2009).
However, these common variants evidently explain only a small
proportion of the overall heritability (Manolio et al., 2009). One
major problem is that the standard approach in GWAS analyzes
each SNP separately and is therefore not designed to identify genetic
variants that have a strong joint effect on the phenotype. While the
assumption of individual SNPs always acting independently makes
little biological sense, deriving and modeling plausible alternatives
is still a major challenge.

Nonparametric, model-free statistical learning machines are a
family of promising alternatives to classical, model-based statistical
methods. Popular learning machines, such as Random Forests
(RFs) (Breiman, 2001), are known to be statistically optimal and
are computationally efficient when run in parallel on distributed
systems. RF is an ensemble method based on a large number
of classification and regression trees trained on bootstrap samples
and has been successfully applied to identify SNPs influencing
susceptibility to disease, e.g. (Jiang et al., 2009; Schwarz et al.,
2010; Goldstein et al., 2011).

A nice feature of RF are variable importance measures (VIMs)
that can be used to order and select the most predictive SNPs.
But the actual importance values are difficult to interpret as
they depend not only on the signal in the data but also on
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the parameters of the algorithm (Genuer et al., 2008). Usually,
SNPs are ranked according to decreasing importance values and
the top ranked SNPs are declared as important. The number
of selected SNPs is often arbitrary and several approaches have
been proposed to objectively determine a threshold. A classical
statistical test could be used by estimating z-scores and calculating
asymptotic p-values (Breiman and Cutler, Random Forests,
http://www.stat.berkeley.edu/˜breiman/RandomForests/cc_home.htm).
However, the power of this test depends on the number of trees,
which is a tuning parameter in RF. Therefore, this method is
not recommended (Strobl and Zeileis, 2008). As an alternative,
the null distribution of the VIMs can be estimated by permuting
phenotype status (see e.g. R package rfpermute). Unfortunately, this
approach would require at least 1000 runs of RF and is therefore
computationally prohibitive for GWAS data sets. Therefore, it is
difficult to decide how many SNPs should be selected with the
threshold being somewhat arbitrary. As a consequence, no clear
criteria exist to decide if RF is able to identify any important SNP
or if the study is underpowered. Indeed, simulations have shown
that when the effects of the causal SNPs on the trait are low and/or
sample size is not extremely large, then most of the SNPs with
strongest VIMs are not causally related to the trait (Kim et al., 2009,
2011).

Here we present a novel variable selection procedure called
recurrent relative variable importance measure (r2VIM). Several
runs of RF are performed each resulting in importance values
calculated relative to the observed minimal importance score.
Only SNPs with large relative VIMs in all of the runs are
declared as important. GWAS data with realistic local linkage
disequilibrium patterns were simulated to evaluate false-positives
and emprical power compared to logistic regression. Analysis of two
experimental GWAS, one that has a strong signal and another one
that is underpowered, illustrate the applicability of our new method.

2 METHODS

2.1 Random Forest
RF is a machine learning approach that combines many classification and
regression trees into a committee or ensemble (Breiman, 2001). Each
tree is built using a bootstrap sample of the data set and at each node
the optimal variable is selected from a random subset of all predictor
variables. Majority voting over all trees is used to classify a sample using
the ensemble. In addition to prediction, RF offers VIMs to assess the
predictive power of each variable. The most reliable measurement is the
(unscaled) permutation importance (Nicodemus et al., 2010) that measures
the difference in prediction accuracy before and after permuting values of
the variable, averaged over all trees.

2.2 New variable selection method r2VIM
Our proposed variable selection method r2VIM is based on the permutation
importance scheme, a standard component of RF. Our method has three
components. First, instead of performing a single run of RF and selecting
a few top ranked variables, we propose running RF several times with
different random number seeds. Then, trees in each run over several forests
will be slightly different leading to random variability in VIMs, where
the randomness is partly sample based and partly seed based. Variables
more predictive of the outcome will have relatively high importance scores
in each of the runs, while other, less predictive variables will have only
randomly high importance scores. The second component of the scheme

Table 1. Information about nine causal SNPs under the alternative hypothesis

SNP MAF RR # SNPs (strong LD) # SNPs (moderate LD)

11-103959987 0.474 1.3 0 1
22-28469630 0.488 1.3 4 8
17-9807099 0.496 1.3 0 0
1-240799543 0.312 1.5 0 0
7-45984820 0.312 1.5 0 2
5-130104076 0.323 1.5 12 18
14-67463012 0.062 2.0 2 31
18-34645639 0.062 2.0 0 1
3-2770509 0.064 2.0 0 1

Table shows SNP identifier in chromosome and position notation, minor allele frequency
(MAF), relative risks (RR) and number of SNPs within a 1 Mb region that are in strong
(r2 > 0.8) or moderate LD (0.3 < r2 ≥ 0.8).

is that variables with little predictive capacity will have importance values
close to zero. It is useful to note that the variable importance values in RF
will generate importances that may be negative. Therefore, since most SNPs
in a GWAS setting are not expected to be associated with the disease, the
smallest, usually negative, observed importance score across the variables,
SNPs in a GWAS, can be used as an approximate estimate of the variability
for variables with no predictive power. The related idea here is that noise
variables will have importances randomly and symmetrically above and
below zero. For each variable, we define a relative importance score by
dividing its value by the the observed minimal importance score. Hence
all SNPs with a relative importance score larger than 1 or in general a
factor f could then defined to be important (see e.g. (Strobl et al., 2009)),
or more accurately, not unimportant. The last part combines the other two
components by declaring only those SNPs as important that have relative
importance scores > f in each of the runs.

For all analyses presented in this paper we used ten runs and factors f

= 1, 3, and 5. As shown in the results, using f = 1 identifies too many
false-positive SNPs under the null hypothesis. That is, the simple observed
minimum, negative importance value is not a good estimate of the variance
of importances across noise features, while simple multiples of the observed
minimum seem to do quite well.

2.3 Simulation study
To evaluate our new variable selection method we simulated genome-wide
data sets with realistic local linkage disequilibrium patterns. Haplotypes
from 381 European individuals provided by the 1000 genomes project were
used as input data for the software GWAsimulator (Li and Li, 2008) to
simulate new haplotypes for a case-control study. 554,813 SNPs from the
Illumina Human660W chip were selected and 10 replicates generated. We
used total sample sizes of 2000 and 6000 with a balanced number of cases
and controls.

To estimate the number of false-positive SNPs, a null hypothesis
was simulated where case-control status was not dependent on any SNP
but was assigned randomly. For empirical power estimation, a simple
alternative hypothesis was generated. Case-control status was determined
by nine independent causal SNPs, each with multiplicative (on relative risk
level) main effects. No gene-gene interaction effects were simulated. For
reasonable power, most of the causal SNPs were common with minor allele
frequencies (MAF) of 0.3 or nearly 0.5 and relative risks for one minor allele
was set to 1.5 or 1.3. In addition, three less common SNPs with MAF of 0.06
and a relative risk of 2 were included into the model. Detailed information
about all nine SNPs can be found in Table 1.

RF analyses were performed with RandomJungle (Schwarz et al., 2010)
version 1.2.365. For each of the ten runs per replicate, 1000 classification
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trees were generated and 100,000 (about 20%) or 250,000 (about 50%)
SNPs randomly selected at each node. The number of samples in terminal
nodes was restricted to 100 and 300 for sample sizes of 2000 and 6000,
respectively. To make the analyses computationally feasible, depth of trees
was limited to 3. Important SNPs were selected using our new variable
selection method with factors of 1, 3 and 5, i.e. only SNPs with relative
importance scores > 1, 3 and 5 in each of the ten runs were selected.
For comparison, logistic regression in PLINK (Purcell et al., 2007) version
v1.07 was performed for each SNP separately and SNPs with a p-value
smaller than the genome-wide significance level of 5 ∗ 10−8 were selected.
Type I errors and empirical power were estimated for each SNP separately
using the proportion of replicates in which a particular SNP was identified.
A SNP was declared a false-positive if it was not in LD with any causal SNP.

2.4 Experimental data
We selected two GWAS studies to illustrate application of the new method on
real data sets. To compare results from a GWAS with a strong signal we used
GWAS data from the Trinity Student Study (TRINITY) which examines
traits related to folate and vitamin B12 metabolism in healthy young Irish
individuals who were students at Trinity College in Dublin at the time of
study enrollment (Desch et al., 2013). The analyzed phenotype is total serum
bilirubin (TBIL) measured as a quantitative trait. For illustration purposes,
we selected individuals at the extremes of the distribution. 193 individuals
with TBIL > 17 and 241 individuals with TBIL < 5 were defined as cases
and controls, respectively. Since missing values pose a problem for RF,
quality controlled SNPs were imputed with PLINK using CEU individuals
from phase 2 of the HapMap project as reference panel resulting in 873,565
common SNPs with complete genotypes.

As a negative control data set we chose a GWAS study with a relatively
small sample size so that the power to identify a real effect is very low.
Data are from the Age-Related Eye Disease Study (AREDS), a cohort
study focusing on risk factors for the development of age-related macular
degeneration (AMD) and cataract (Simpson et al., 2013; Stambolian et al.,
2013). Mean spherical equivalent (MSE) of both eyes was calculated on
study participants without either AMD or cataracts at the first study visit.
A binary phenotype hyperopia defined 858 cases as those with MSE ≥ +1D
and 602 controls with MSE < 0D. Quality-controlled SNPs were imputed
using MACH (Li et al., 2010) based on HapMap phase 2 reference panel. To
reduce the number of SNPs for analysis, LD pruning was performed using
PLINK with pairwise r2 of 0.99 as threshold. 908,293 common SNPs with
complete genotypes remained for analysis.

Parameters for RF analysis were similar to the simulated data. In brief,
1000 trees restricted to a depth of 3 and 5% of the sample size in the terminal
nodes were generated in ten runs of RF per data set. Twenty percent of the
SNPs were randomly selected at each node and factors 1, 3 and 5 were used
for variable selection.

3 RESULTS
3.1 Simulation study
Results under the null hypothesis with case-control status assigned
randomly are shown in Figure 1. As expected, no SNP
reaches genome-wide significance in all ten replicates for logistic
regression. In contrast, the number of false-positive SNPs identified
by the new variable selection procedure depends on the factor that
is used to define the threshold for declaring SNPs as important (see
Figure 1). If a liberal factor of 1 is used, between seven and 13 SNPs
are selected across settings. Three and two SNPs on chromosomes
4 and 8 are highly correlated (pairwise r2 > 0.8), resulting in five
to 12 independent regions. However, all SNPs have been selected
in only one replicate and each SNP is selected either with a sample
size of 2000 or 6000. In general, a smaller number of false-positive
SNPs is identified for the larger sample size. If the factor is increased
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Fig. 1. Heatmaps showing type I error of single SNPs in simulated GWAS
for logistic regression and variable selection method with several factors
in the different scenarios (different sample sizes and mtry parameters in
random forest). Columns correspond to SNPs that are selected in at least
one approach and are ordered by chromosomal position. Type I error is
color-coded in gray with white and black denoting 0 and 1, respectively. In
addition, LD information is shown at the top with SNPs in high (r2 > 0.8)
and moderate LD (0.3 < r2 ≤ 0.8) colored in red and yellow.

to 3, only the region on chromosome 8 is selected for the smaller
sample size whereas none of the SNPs is found for the larger one.
In addition, if the most stringent factor of 5 is used, type I error is
well controlled since the new variable selection procedure declares
none of the 500,000 SNPs as important.

Empirical power under the alternative hypothesis is summarized
in Figure 2 and Table 2. Detailed information about each SNP that
was detected in at least one replicate and with at least one method
are given in Supplementary Table 1. With logistic regression eight
out of the nine causal SNPs have empirical power > 0 for the smaller
sample size. However, only the three common SNPs with relative
risks of 1.5 have significant p-values in more than 5 replicates. In
the larger data set, all causal SNPs are identified in all ten replicates.
All other SNPs with significant p-values are in LD with one of the
causal SNPs. The new variable selection method identifies seven and
nine causal SNPs with a sample size of 2000 and 6000, respectively.
However, power decreases from factor 1 to 3 and 5. The largest
reduction in power is observed for the very common SNPs with
small effects on chromosomes 17 and 22. Increasing the factor value
also reduces the number of selected SNPs that are correlated with
one of the causal SNPs. In concordance with results under the null
hypothesis, using a factor of 1 results in identification of four to 13
false-positive SNPs (each observed in only a single replicate) that
are not correlated with any of the causal SNPs and that are often
located on other chromosomes. Interestingly, more false-positives
are observed for the larger mtry value for both sample sizes. Again,
the number is greatly reduced for a factor of 3 with one false-positive
SNP identified with mtry = 250000. And only causal SNPs or SNPs
correlated with causal SNPs are selected with a factor of 5.
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Fig. 2. Heatmaps showing empirical power of single SNPs in simulated
GWAS for logistic regression and variable selection method with several
factors in the different scenarios (different sample sizes and mtry parameters
in random forest). Only the nine causal SNPs (marked in red on top) and
false-positive SNPs that are uncorrelated to each causal SNP are shown
in columns and ordered by chromosomal position. Empirical power is
color-coded in gray with white and black denoting 0 and 1, respectively.

Table 2. Number of SNPs in simulated GWAS with empirical power > 0
for logistic regression (LR) and random forest (RF).

method n mtry factor total causal
high
LD

mod
LD

low
LD

FP

LR 2000 40 8 15 11 4 0
LR 6000 98 9 16 15 15 0
RF 2000 100000 1 38 7 13 10 2 4
RF 2000 100000 3 28 7 12 6 2 0
RF 2000 100000 5 24 7 10 5 2 0
RF 2000 250000 1 40 8 12 9 2 8
RF 2000 250000 3 25 7 9 5 2 1
RF 2000 250000 5 23 7 9 5 2 0
RF 6000 100000 1 51 9 16 10 5 3
RF 6000 100000 3 41 9 16 6 4 0
RF 6000 100000 5 37 9 16 6 4 0
RF 6000 250000 1 63 9 16 12 6 13
RF 6000 250000 3 42 9 16 7 4 1
RF 6000 250000 5 37 9 16 5 4 0

Table shows method, sample size (n), mtry parameter and factor for RF, total number of
SNPs, number of SNPs in high (r2 > 0.8), moderate (0.5 < r2 ≥ 0.8) and low LD
(0.3 < r2 ≤ 0.5) LD with any causal SNP as well as number of false-positive SNPs
(FP).

3.2 Experimental data
The two experimental GWAS data sets have different results. Figure
3 shows a very strong signal on chromosome 2 for the TRINITY
study. Ninety-eight SNPs in this region are genome-wide significant
with a minimal p-value of 2.342 ∗ 10−29 (see Figure 3a). Fourty-
two, 35 and 34 SNPs in the same region are selected by the
new RF variable selection method using factors of 1, 3 and 5,
respectively. They have large minimal relative importance scores
with a maximum of 240.13 (see Figure 3b). Supplementary Figure 1
compares P-values and minimal relative importance scores for SNPs
that were selected by either method on chromosome 2. P-values are

Fig. 3. Manhattan plots for TRINITY data set. a) P-values of logistic
regression for each SNP. Dotted line denotes genome-wide significance level
of 5 ∗ 10−8. b) Minimal relative variable importance (VIM) based on RF
analysis for each SNP.

very similar for a long region of 100 kb because of strong linkage
disequilibrium, whereas only four SNPs at about 234.33 have very
large relative importance scores. Two additional SNPs, one on
chromosome 1 and the other one on chromosome 13, are selected
with a factor of 1. However, if a more stringent factor is used they
are not declared as important and p-values of logistic regression
are larger than 0.1 for both SNPs. Detailed information about all
selected SNPs on chromosome 2 can be found in Supplementary
Table 2.

Results for the underpowered AREDS study are summarized
in Figure 4. Using logistic regression, no SNP is genome-wide
significant and the smallest p-value of 3.011 ∗ 10−7 is observed for
a SNP on chromosome 7 (see Figure 4a). Similarly, the new variable
selection method selects none of the SNPs even with the most liberal
factor 1 and minimal relative importance scores are much smaller
than 1 (see Figure 4b). Again, SNPs on chromosome 7 have the
largest minimal importance scores.

4 DISCUSSION
In this work, we presented a new approach for RF to select important
variables, i.e. SNPs in GWAS. Evaluations on simulated GWAS data
showed that this new method controls the number false-positives
and has only slightly less power than the standard approach logistic
regression.

Further research is needed to evaluate this promising method
in more realistic situations. Since this work was designed as a
proof-of-concept study we simulated common SNPs with effects
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Fig. 4. Manhattan plots for AREDS data set. a) P-values of logistic
regression for each SNP. b) Minimal relative variable importance (VIM)
based on RF analysis for each SNP.

that are larger than the ones observed in real studies. A power
comparison using more realistic effect sizes, however, would require
larger sample sizes so that there is a chance to detect the signal.
Another limitation of the current study is the very simple alternative
hypothesis with case-control status determined by a small number of
SNPs interacting independently. We expect RF in combination with
the new variable selection procedure to be more powerful than single
SNP analyses in more complex scenarios including gene-gene or
gene-environment interactions.

Our new variable selection method introduces an additional
parameter that determines the threshold in each run. Our simulations
show that a fairly stringent parameter is needed to fully control
the number of false-positives SNPs that are identified. However,
this approach leads to reduced power. Depending on the costs of
follow-up analyses and experiments, more liberal thresholds might
be preferred in situations where sensitivity is more important.

For each hypothesis and each sample size we only simulated ten
replicates to reduce computation time. Simulating one replicate and
converting the data into appropriate input formats for PLINK and
RandomJungle took approximately 4 hours on the high performance
Biowulf Linux cluster at the National Institutes of Health, Bethesda,
Md. (http://biowulf.nih.gov). We restricted the size of the trees in
each forest, so that a single run of RF was performed in about 8
hours. We checked the effect of the depth parameter by generating
trees that were only restricted by node size for some of the replicates
with similar or slightly worse results (data not shown).

Similarly, we made several decisions regarding the analysis of
the two experimental GWAS data sets for illustration purposes. The
first was to dichotomize the provided quantitative traits because our
simulation study was focused on case-control studies. Although we

were still able to identify the strong signal in the TRINITY data , this
approach is usually less powerful and therefore not recommended
(Yang et al., 2010). In the AREDS data set, we reduced the number
of SNPs by LD pruning. In a real study we would not recommend
to remove SNPs, but rather use RF to select the important variables.
In some smaller simulation studies (Nicodemus and Malley, 2009;
Walters et al., 2012), LD seemed to be a problem in identifying the
true causal SNP in regions with moderate and high LD, but in our
simulations the causal SNP usually had the highest power. However,
additional simulation studies are needed to fully explore the effect
of LD in a genome-wide setting because our causal SNPs were not
located in regions with very high LD and especially not in very long
LD blocks.

RF identified a much smaller region in the TRINITY data
compared to the large number of SNPs with similar p-values
based on logistic regression. Linkage and association studies
have shown that genetic variants in this region influence TBIL
levels (Kronenberg et al., 2002; Johnson et al., 2009) and the most
promising candidate gene is Uridine diphosphate glucuronosyl
transferase 1 family, polypeptideA1 (UGT1A1) which is involved
in bilirubin metabolism. Interestingly, three out of the four SNPs
with the largest median importance scores are located in introns of
the gene.

In conclusion, our new variable selection approach is a promising
tool for joint analysis of GWAS data that helps to identify interesting
regions for follow up studies while limiting the number of false-
positives.
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