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ABSTRACT: As the cost of genome-wide genotyping decreases, the number of genome-wide association studies (GWAS)
has increased considerably. However, the transition from GWAS findings to the underlying biology of various phenotypes
remains challenging. As a result, due to its system-level interpretability, pathway analysis has become a popular tool for gaining
insights on the underlying biology from high-throughput genetic association data. In pathway analyses, gene sets representing
particular biological processes are tested for significant associations with a given phenotype. Most existing pathway analysis
approaches rely on single-marker statistics and assume that pathways are independent of each other. As biological systems are
driven by complex biomolecular interactions, embracing the complex relationships between single-nucleotide polymorphisms
(SNPs) and pathways needs to be addressed. To incorporate the complexity of gene-gene interactions and pathway-pathway
relationships, we propose a system-level pathway analysis approach, synthetic feature random forest (SF-RF), which is
designed to detect pathway-phenotype associations without making assumptions about the relationships among SNPs or
pathways. In our approach, the genotypes of SNPs in a particular pathway are aggregated into a synthetic feature representing
that pathway via Random Forest (RF). Multiple synthetic features are analyzed using RF simultaneously and the significance
of a synthetic feature indicates the significance of the corresponding pathway. We further complement SF-RF with pathway-
based Statistical Epistasis Network (SEN) analysis that evaluates interactions among pathways. By investigating the pathway
SEN, we hope to gain additional insights into the genetic mechanisms contributing to the pathway-phenotype association. We
apply SF-RF to a population-based genetic study of bladder cancer and further investigate the mechanisms that help explain
the pathway-phenotype associations using SEN. The bladder cancer associated pathways we found are both consistent with
existing biological knowledge and reveal novel and plausible hypotheses for future biological validations.
Genet Epidemiol 38:209–219, 2014. C⃝ 2014 Wiley Periodicals, Inc.
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Introduction
Genome-wide association studies (GWAS) have become a
powerful and affordable tool to identify genetic variation
associated with susceptibility to common human diseases
[Hirschhorn and Daly, 2005; Merikangas et al., 2006]. Since
2005, more than 1,000 human GWAS publications have re-
ported genetic associations to a wide range of diseases and
traits [Hindorff et al., 2009]. However, using GWAS find-
ings to study the underlying pathobiology of human diseases
remains a challenge. This is mostly due to two factors: (1)
most loci identified in GWAS have very small effect sizes ac-
counting for a small proportion of the genetic variance, i.e.,
the problem of “missing heritability” [Manolio et al., 2009];
(2) biological systems are driven by complex biomolecular
interactions instead of individual genes [Schadt, 2009]. It is
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clear that the one genetic variant at a time approach that
has defined the GWAS analysis strategy will provide only
part of the complex picture that is genetic architecture. As
an alternative approach, pathway analysis highlights the risk-
associated biological processes thus taking into account the
aggregate effects of multiple genetic variants across multiple
genic regions. This has the advantage of being less susceptible
to replication issues due to shifting allele frequencies or in-
teracting environmental exposures. It also has the advantage
of facilitating interpretation due to the focus on biological
processes that are the keys to understanding the mechanisms
of diseases initiation and progression. The ultimate goal is
to use pathway associations to develop strategies to diagnose,
treat, and prevent complex diseases [Lee et al., 2008; Ramanan
et al., 2012], which makes high-throughput datasets more of-
ten viewed as a foundation to discover associated pathways
[Hirschhorn, 2009].

In pathway analyses, gene sets corresponding to biolog-
ical pathways are tested for significant associations with
a phenotype. A number of analytical methods have been
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proposed. The most widely used method, pathway-
enrichment, usually employs two strategies: the threshold-
based framework and the rank-based framework. Threshold-
based methods statistically evaluate the fraction of genes in a
particular pathway among all the significant markers [Boyle
et al., 2004; Khatri and Draghici, 2005]. Rank-based meth-
ods rank all markers based on their significance and then
search for pathways that have better rankings than the overall
distribution [Holden, 2008; Nam et al., 2010; Subramanian
et al., 2005]. Although enrichment approaches have been
proved useful, they have almost exclusively ignored com-
plex nonlinear gene-gene interactions, known as epistases
[Moore and Williams, 2009], that may exist among the ge-
netic variants in a pathway. This was recently addressed by
Kim et al. [2012], which provided an enrichment method
for mapping pairwise epistasis results to genes for pathways
analysis of GWAS data. Finally, most current approaches as-
sume that each pathway is independent of the others, thus
ignoring higher-order effects. The independence of path-
ways is likely not a good assumption. For example, Bandy-
opadhyay et al. found that rewiring of genetic interactions
in response to DNA damage is more likely to occur among
pairs of genes from two different biological processes in yeast
[Bandyopadhyay et al., 2010]. Also, cellular components and
molecules do not work in isolation; instead, pathways over-
lap, so that many gene sets and pathways will unavoidably
share genes. In other words, pathways might have dependen-
cies on each other [Wang et al., 2007]. Therefore, overlook-
ing the relationships among pathways could be problematic
[Khatri et al., 2012]. To address those issues, methods that
embrace the complexity of the genetic architecture underly-
ing complex traits and assess the system-level significance of
a pathway by analyzing multiple pathways simultaneously are
needed.

Machine learning (ML) methods are capable of modeling
the phenotypic effects of multiple genetic variations without
some of the strict assumptions of parametric statistical meth-
ods [Moore et al., 2010]. As a staple in the data mining and ML
research community, random forest (RF) has seen wide ap-
plication [Bureau et al., 2005; Jiang et al., 2009; Lunetta et al.,
2004] and we briefly review this approach. A forest is made
of decision trees and a decision tree classifies subjects as cases
or controls by sorting them from top to bottom of the binary
tree. In a decision tree, each node is an attribute with a deci-
sion rule that guides a subject through branches of the tree to
a leaf node that provides its classification. An RF is a collec-
tion of individual decision-tree classifiers, where each tree is
trained using a set of bootstrap-sampled subjects. The overall
classification of a subject is based upon aggregate voting over
all trees in the forest [Breiman, 2001]. Although a common
binary classification of a subject is useful, the probability of
that subject belonging to a class can be more informative.
Recently, Malley et al. [Malley et al., 2011] showed how RF
could be used to estimate the class membership probability,
defined as the conditional probability of a subject belonging
to a class given a list of attributes. In biomedical applications,
it can represent the probability that a subject is sick or healthy.

Here, we define predicted probability as the probability of a
subject having a disease. Predicted probability can describe
how a given set of attributes, as a unit, affects the disease
risk of a subject. More precisely, the discrepancy between
predicted probabilities of the testing cases and controls indi-
cates the system-level importance of a set of attributes, and
this makes the above method a promising tool for pathway
analyses.

In addition to ML methods such as RF, network science has
been used to model biological interactions and dependencies
(e.g., Andrei and Kendziorski [2009], Chu et al. [2009], Ideker
and Sharan [2008]). Recently, Hu et al. [2011] proposed sta-
tistical epistasis networks (SENs) to characterize the space
of pairwise interactions in population-based genetic asso-
ciation studies. In these networks, each vertex corresponds
to a genetic variant such as a single-nucleotide polymor-
phism (SNP). An edge linking a pair of vertices corresponds
to a synergistic (i.e., nonadditive) interaction between two
SNPs. Weights assigned to each SNP and each pair of SNPs
quantify how much of the disease status the correspond-
ing SNP and SNPs pair can explain. The significance of
SEN is not limited to single main effect or interaction ef-
fects. Instead SEN describes the overall significance of the
global interaction structure, which makes this approach suit-
able for pathway analyses at the system level. Moreover, the
clear separation between main and interaction effects and
various network measurements in SEN approach provide
more detailed information to explain the pathway-phenotype
associations.

In this article, we propose a predicted-probability-based
approach called synthetic feature random forest (SF-RF) and
complement it using SEN. We hypothesize that if a path-
way is associated with a disease, this pathway, viewed as a
single synthetic feature, may provide good prediction of the
disease status, and its interaction networks may show signifi-
cant topological properties. The set of features in a pathway is
presented to RF as a new feature list and is then used by RF to
predict the original outcome. The forest generated by RF over
these features forms a synthetic feature, and this in turn can
be used in other forests or multivariate statistical methods.
After finding the most important pathways, we use SEN to
take a closer look at the interaction structures within those
pathways and try to explain the mechanisms that contribute
to their overall significance. Our SF-RF approach differs from
many existing pathway analysis techniques in the following
aspects: (1) it embraces the complexity at the SNP level as RF
considers both main and interaction effects [Bureau et al.,
2005; Jiang et al., 2009; Winham et al., 2012]; (2) it consid-
ers the actual strength of each SNP instead of relying on the
rankings; (3) by considering the synthetic features jointly,
it assesses the relative importance of multiple pathways si-
multaneously, which allows direct comparison of the signif-
icance of related or overlapping pathways; and (4) by quan-
tifying the significance of synthetic features using a model-
free and nonparametric method, RF, it considers pathway-
pathway relationships instead of treating each pathway
independently.

210 Genetic Epidemiology, Vol. 38, No. 3, 209–219, 2014



Methods

Dataset

The dataset used in this study consisted of cases of bladder
cancer among New Hampshire residents, ages 25 to 74 years,
diagnosed from July 1, 1994 to December 31, 2001, and iden-
tified in the State Cancer Registry. Controls less than 65 years
of age were selected using population lists obtained from the
New Hampshire Department of Transportation. Controls 65
years of age and older were chosen from data files provided by
the Centers for Medicare & Medicaid Services (CMS) of New
Hampshire. This dataset shared a control group with a study
of nonmelanoma skin cancer in New Hampshire covering an
overlapping diagnostic period of July 1, 1993 to June 30, 1995.
Additional controls for bladder cancer cases diagnosed from
July 1, 1995 to June 30, 1998 were selected with matching age
and gender.

To assess the relationship between genetic variations in nine
major carcinogenesis processes and bladder cancer suscepti-
bility, 1,303 SNPs (125 in apoptosis, 207 in DNA repair, 232
in immune, 67 in hormone, 310 in metabolism, 9 in neural,
281 in proliferation, 23 in telomere, and 49 in transport or
signaling) were identified according to the Database for An-
notation, Visualization, and Integrated Discovery (DAVID)
Gene Ontology (GO) search engine [Jr et al., 2003]. Geno-
typing was performed (restricting to Caucasians and transi-
tional cell carcinoma cases of known stage: 563 transitional
cell carcinoma cases and 863 controls) using the GoldenGate
Assay System. The missing genotypes were imputed using a
frequency-based method, i.e., the missing value of an indi-
vidual was filled using the most common genotype of cor-
responding SNP in the population. More details about the
dataset can be found at Andrew et al. [2006] and Karagas
et al. [1998].

SF-RF

Following our conjecture that SNPs in the same pathway
associated with a disease would be good at distinguishing
cases and controls, we propose SF-RF that is designed to ad-
dress the following three questions. (1) Given a set of SNPs
within a pathway, how well can we classify cases and con-
trols without ignoring the interaction effects among SNPs or
throwing out the individually weak or nonsignificant SNPs
that might contribute to additive effects? (2) Can we quan-
tify the significance of a pathway considering its relationships
with others (i.e., pathway-pathway interactions etc.) instead
of treating it independently?

In our approach, we first annotated all the SNPs in the
dataset with their canonical-pathway functions. As shown in
Figure 1, the complete SNP dataset was divided into nine
subsets and each subset only contained SNPs in a particular
pathway. SF-RF was carried out to convert a set of SNPs into a
single continuous feature with values of the predicted proba-
bility, i.e., the probability of this subject being sick, given the
genotype of SNPs in the pathway under consideration.

As shown in Figure 1, given a subset that corresponds to
pathwayi, SF-RF included the following steps (right panel in
Fig. 1). To ensure that synthetic features are independent of
the training data, instead of bagging, we performed a 10-fold
cross-validation where subjects were divided into 10 equal-
size partitions. In each cycle one partition was chosen as a
testing set and the left nine partitions formed a training set.
The value of a synthetic feature on a specific subject was
computed when that subject was in the testing set. Because
each individual will be in the testing set once during the 10
cycles, the values of a synthetic feature can be computed for
all individuals throughout the 10 cycles. Specifically, the gen-
eral procedure took the following steps (for each synthetic
feature) [Breiman, 2001; Malley et al., 2011]: (1) all subjects
in the dataset were divided into a training set and a test-
ing set; (2) a bootstrap set of size sampsize was drawn with
replacement from the training set; (3) a decision tree was
constructed using the bootstrap training set through the re-
cursive process of splitting subjects into two distinct subsets
using the attributes (from a list of randomly chosen mtry
attributes within each pathway) that separate cases and con-
trols the best; (4) a tree grew to the largest extent when the
number of subjects in a node reached a minimum nodesize,
and then this node became a leaf node with the proportion
of case subjects as its output value; (5) steps (2) to (4) were
repeated to grow a forest of ntree trees; (6) the predicted
probability of a new testing subject was estimated, by travers-
ing the constructed decision trees from top to bottom, as the
average output of final leave nodes it visited from all ntree
trees.

We used the randomForest package in R with sampsize
= 811, mtry =

√
anumber (anumber is the number of at-

tributes), nodesize = 81, and ntree = 2,000. sampsize = 811
and mtry =

√
anumber were the default setting that has been

shown to work well in most cases [Liaw and Weiner, 2002].
We set nodesize as 10% of sampsize, so that the terminal nodes
were not underpopulated, which will lead to overfitting, or
overpopulated, which will reduce the prediction power. The
choice of 10% was a practical decision recommended by Mal-
ley et al. [2011], and the guiding theory was given by Devroye
et al. [1996]. We experimented with different settings of ntree
and found that our findings stayed stable when we further
increased ntree.

Next, we hypothesized that if the SNPs in a pathway are
able to separate cases and controls well, the synthetic fea-
ture constructed from them will be informative at classifying
cases and controls. Consequently, the significance of a path-
way can be measured as the significance of the corresponding
synthetic feature. To assess the significance of our nine syn-
thetic features, we used a multivariable logistic regression
approach and all nine synthetic features were included in the
equation. Significance of each synthetic feature is reported as
P-values of Wald test. Because multiple relevant or overlap-
ping pathways might all be significant when analyzed one by
one, including all synthetic features in the regression equation
ensures that we are able to recognize the most phenotypically
associated one.
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Figure 1. Summary of the general steps involved in SF-RF. The SNP data were divided into M subsets based on the functional annotations
(M = 9 in this study). A subset only contained the SNPs in a particular pathway. For each subset, a synthetic feature representing the corresponding
pathway was generated using SF-RF. Specifically, the data in pathwayi were divided into a training set (e.g., 9/10 of the data) and an independent
testing set (e.g., 1/10 of the data) as part of the cross-validation. (a) After building a forest using the training set, (b) the individuals in the testing set
were dropped on the trees and they travel from top to bottom following the decision rules at each node. When an individual reached a leaf node in a
tree, the leaf node’s output, i.e., the proportion of “1”s (cases), was stored. (c) The predicted probability of that individual can be estimated through
averaging the outputs of its final leave nodes across all trees. (d) Consequently, a continuous value was generated for every individual in the
testing set. (e) The above steps were repeated for each possible cross-validation interval. At the end, each sample was assigned with a predicted
probability given the genotypes of SNPs in pathwayi, which can be used as a new feature for further analysis. We name it as synthetic feature,
SFi. After generating M SFs for M pathways, an RF was built on all SFs. The variable importance measure was used to reflect the importance of a
pathway.

Note that pathways with a larger number of SNPs may yield
better P-values simply because of a higher chance of having
false-positive SNPs. To adjust for the pathway size differences,
we conducted permutation tests. We were interested in test-
ing whether true gene effects were randomly scattered among
genes in different pathways or not assuming that the dis-
ease risk is fixed and therefore preferred gene permutations
to sample permutation [Guo et al., 2009]. Specifically, the
significance of the logistic regression P-values was assessed
through randomly permuting the SNP-pathway mapping to
create nine “dummy” pathways with the same sizes as the
nine actual pathways. We generated synthetic features for the
nine “dummy” pathways as before, performed the same logis-
tic regression analyses, and computed permuted P-values for
all the “dummy” pathways. This process was repeated 1,000
times. We computed the fraction of permuted P-values equal
to or better than the actual logistic regression P-value. To ad-
just for multiple comparisons, we conducted the Benjamini-
Hochberg procedure for false discovery rate (FDR) control
[Benjiamini and Hochberg, 1995]. The P-values after size
adjustments and multiple-comparison adjustments were de-

noted as Plr
size-adjusted. Using this pathway size adjustment, we

were able to detect pathways that were significant for classify-
ing cases and controls solely due to the specific combination
of the SNPs within it rather than the large number of its
underlying SNPs.

We also analyzed the significance of synthetic features
using a model-free and nonparametric method, RF, where
pathway-pathway relationships were taken into account. We
ran RF algorithm on synthetic features and quantified the
importance of them using both the Gini importance mea-
sure and the variable importance measure. Gini importance
was derived from the training of the RF classifier. It indi-
cated how often a particular variable was selected for a split,
and how large its overall discriminative value was for the
classification problem under study [Gini, 1912]. Variable im-
portance was motivated from statistical permutation tests
[Menze et al., 2009]. Again, to adjust for different pathway
sizes, we randomly shuffled the SNP-pathway mapping, gen-
erated permuted synthetic features, carried out RF analysis
on permuted synthetic features, and quantified the permuted
Gini and variable importance. This step was repeated 1,000
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times. Plr
size-adjusted was calculated as the fraction of permuted

Gini or variable importance that were equal to or better than
the actual value.

SENs

Network science has emerged as a very useful approach to
characterizing gene-gene interactions by representing genetic
attributes as vertices and their correspondences as edges. In
the framework of SENs [Hu et al., 2011], for a genetic associa-
tion study dataset, all pairwise interactions were exhaustively
enumerated and quantified using an information-theoretic
measure. Then a network was built by adding pairs of genetic
attributes (as edges and their end vertices) with strengths, or
significance, of pairwise interactions higher than a theoreti-
cally derived threshold.

Specifically, given a genetic attribute G1 and the phenotypic
class C, mutual information I(G1;C) quantifies the amount of
information shared by G1 and C, and is defined using Shan-
non entropy as I(G1;C) = H(C) – H(C | G1) where H(C) is
the entropy, or uncertainty, of C and H(C | G1) is the con-
ditional entropy of C given the knowledge of G1. Intuitively,
I(G1;C) describes the reduction of uncertainty of C due to
the knowledge of G1, i.e., the main effect of the genetic at-
tribute G1 on the class C. Moreover, for a pair of genetic
attributes G1 and G2, I(G1,G2;C) is the mutual information
between the class C and joining G1 and G2 together. The
mutual information about C that is gained from combining
G1 and G2 can be obtained by subtracting from I(G1,G2;C)
the individual mutual information I(G1;C) and I(G2;C), i.e.,
IG(G1;G2;C) = I(G1,G2;C) – I(G1;C)-I(G2;C). In information-
theoretic terms, IG(G1;G2;C) is called information gain, and
can be used to measure the synergy, or the epistatic inter-
action, between attributes G1 and G2 associated with the
phenotypic class C. Because information gain is a nonpara-
metric and model-free measure on pairwise epistasis, it has
been applied to various genetic association studies [Fan et al.,
2011; Jakulin and Bratko, 2003; Moore et al., 2006; Varadan
et al., 2006].

The threshold of including pairwise interactions can be
derived systematically by analyzing the topological proper-
ties of the networks [Hu et al., 2011], such as the size of a
network, the connectivity of a network (the size of its largest
connected component), and its vertex degree distribution.
Permutation testing is often used to provide a null distri-
bution of properties of networks built from permuted data.
This null distribution can be used to determine the thresh-
old that mostly distinguishes the real-data network from the
permuted-data networks.

SEN is essentially an attribute-prioritization technique.
However, different from many existing main effect cen-
tered pruning methods, SEN focuses on strong pairwise in-
teractions. Moreover, by constructing a global interaction
map, SEN provides both the neighborhood structure of
each attribute and also the topology of a set of clustered
attributes. It serves a very useful tool for identifying com-
plex interactions among a large set of genetic attributes that

may jointly modify a phenotypic outcome [Lavender et al.,
2012].

In this study, we used SEN to quantify the main and inter-
action effects of SNPs within each pathway. The character-
ization of genetic architecture helped us gain confidence in
the findings using SF-RF. In addition, one goal of SF-RF was
to test for risk-associated pathways without overlooking the
complex relations among pathways. Therefore, topological
analysis of SEN constructed using the whole dataset, which
revealed interactions among pathways, can serve as additional
evidence for the findings of SF-RF.

Results
We first used SF-RF to test the associations between dif-

ferent pathways and bladder cancer susceptibility. Neural,
proliferation, and telomere were consistently found to be the
most associated pathways using different significance and im-
portance assessments. Pathway hormone was identified only
when we analyzed synthetic features with a second layer of
RF. We then took a closer look at the pathway-phenotype
associations by constructing SENs for each pathway and a
global SEN including all the SNPs in the dataset.

Predicted Probabilities of Synthetic Features

As described previously, a predicted probability of each
subject having the disease was estimated when the subject
is in the testing set using the SNPs in a particular pathway.
For each pathway, we tested for the difference of predicted
probabilities between the cases and controls. The discrepan-
cies between the cases and controls were significant for three
pathways including neural (Kolomogorov-Smirnov test P-
value = 0.021), proliferation (P-value = 0.005), and telomere
(P-value = 0.003). To control for FDR, we carried out the
Benjamini-Hochberg procedure and the adjusted P-values
for telomere, proliferation, and neural are 0.027, 0.023, and
0.063 accordingly.

Pathway Significance Assessment Using Logistic
Regression

We tested the associations between synthetic features
(pathways) and bladder cancer susceptibility using multivari-
ate logistic regression including all nine pathways together
(Table 1). Three pathways, including neural, proliferation,
and telomere, were significant in the regression (P = 0.021,
5.42 × 10–3, and 2.90 × 10–3, respectively). The other six
pathways did not meet our criteria of statistical significance.
To consider the bias introduced by pathway size differences,
Plr

size-adjusted was assessed as described previously. As shown in
the table that all the top three significant pathways remained
significant after size adjustments and multiple-comparison
adjustments.

Pathway Importance Assessment Using RF

We also assessed pathway importance using both the
RF variable importance and the Gini importance (Fig. 2).
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Table 1. Logistic regression on the nine synthetic features (pathways)

Telomere Proliferation Neural Immune Apoptosis Transport Metabolism Hormone DNArepair

P-value 2.90 × 10–3 5.42 × 10–3 0.021 0.085 0.122 0.136 0.325 0.389 0.908
P lr

size–adj usted <0.001 0.003 <0.001 0.072 0.287 1.125 1.125 0.007 1.28

To consider the size differences among pathways, a null distribution of logistic regression P-value was generated by randomly shuffling the SNP-pathway mapping and
recomputing the multivariable logistic regression P-value for each “dummy” pathway 1,000 times. We first measured the fraction of permuted P-values that are equal to or better
than the actual P-value, and then carried out the Benjamini-Hochberg procedure for the multiple-testing adjustment. P lr

size–adj usted reported here have been adjusted for multiple
testing.

Figure 2. Pathway importance assessed using (A) RF variable importance and (B) Gini importance. To adjust for the bias introduced by pathway
size differences, the null distribution of each pathway importance is generated by randomly shuffling SNP-pathway mapping and recomputing the
corresponding pathway importance 1,000 times. P lr

si ze−ad j usted is the fraction of permuted pathway importances equal to or better than the actual
importance. PathwayRF evaluates pathways by the predictive power of their SNPs. LeFE tests the difference of the variable importance distribution
between the candidate pathway and negative controls, and uses its significance as the P-value of the candidate pathway. Oob accuracy assessed
using PathwayRF and P-value estimated using LeFE are reported for comparison with our method. P lr

si ze−ad j usted , oob accuracy, and PLeFE are
reported in the same order as that in (B).

Overall, neural, hormone, proliferation, and telomere were
the best disease-predicting pathways. The significance of a
pathway’s importance with size adjustment Plr

size-adjusted was
calculated. All the three significant pathways found by logis-
tic regression previously, including neural, proliferation and
telomere, were also detected here (Plr

size-adjusted < 0.001). Addi-
tional pathway, hormone, also had significant RF importance
(Plr

size-adjusted < 0.001).
We compared our approach with two other RF-related

methods. PathwayRF [Pang et al., 2006] identified pathways
in which SNPs have high predictive power. Specifically, a sin-
gle RF was constructed for each pathway and pathways with
high out of bag (oob) accuracy were considered as associated
risk. The oob accuracies computed using PathwayRF with all
parameters set as default are shown in Figure 2.

Another RF-related approach, Learner of Functional En-
richment (LeFE) [Eichler et al., 2007], was also applied to our
dataset for a comparison. LeFE tested if the variable impor-
tance distribution of genes in a given category/pathway was
significantly distinguishing from the distribution of genes
not in the pathway. Specifically, a candidate gene set was
formed by all the genes in a candidate pathway, and a neg-
ative control set was formed by randomly selecting C × n
genes that were not in the candidate pathway, where n was
the number of genes in the candidate pathway and C was an

integer constant used to mitigate issues of statistical impre-
cision associated with small pathways. A composite dataset
was assembled by combining both the candidate gene set and
the negative control set, and was consequently used to build
RFs. The significance of the candidate pathway was assessed
using a one-sided t-test comparing the variable importance
of genes from the candidate set and genes from the negative
control set. This process was repeated multiple times using
different negative control sets. The median P-value of t-tests
was reported as the final significance of the candidate path-
way. The P-values of all pathways estimated using LeFE with
default settings are reported in Figure 2. Three pathways in-
cluding neural, telomere, and DNA repair were detected as
significant (PLeFE < 0.05).

In addition, we assessed the pathways using Gene Set En-
richment Analysis. Using the nine major carcinogenesis path-
way groups, as well as the detailed 600 GO Biological Pro-
cesses, we did not observe any gene sets that met our threshold
of FDR <0.25.

Main and Interaction Effects of Attributes Within Each
Pathway

To quantify the main and interaction effects of SNPs within
each pathway, we counted the number of SNPs with main
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Table 2. Percentages of SNPs with significant main and interaction effects within each pathway

Pcutoff Apoptosis DNA repair Hormone Immune Metabolism Neural Proliferation Telomere Transport

SNPs with significant main effects
0.001 0.00% 0.48% 1.49% 0.00% 0.32% 0.00% 1.07% 0.00% 2.04%

(0/125) (1/207) (1/67) (0/232) (1/310) (0/9) (3/281) (0/23) (1/49)
0.01 0.00% 0.97% 4.48% 1.29% 3.22% 0.00% 3.56% 4.35% 2.04%

(0/125) (2/207) (3/67) (3/232) (10/310) (0/9) (10/281) (1/23) (1/49)
0.05 6.00% 4.83% 14.92% 5.17% 8.71% 11.11% 8.19% 17.39% 4.08%

(8/125) (10/207) (10/67) (12/232) (27/310) (1/9) (23/281) (4/23) (2/49)
SNPs with significant pairwise interaction effects
0.001 0.21% 0.11% 0.05% 0.15% 1.27% 0.00% 0.10% 0.00% 0.17%

(16/7,750) (23/21,321) (1/2,211) (39/26,796) (61/47,895) (0/36) (39/39,340) (0/253) (2/1,176)
0.01 1.73% 1.26% 0.59% 1.35% 1.37% 6.25% 1.20% 3.16% 0.60%

(134/7,750) (269/21,321) (13/2,211) (362/26,796) (655/47,895) (2/36) (474/39,340) (8/253) (7/1,176)
0.05 6.57% 5.97% 4.03% 5.54% 6.00% 9.38% 5.65% 7.51% 6.38%

(509/7,750) (1,272/21,321) (89/2,211) (1,485/26,796) (2,875/47,895) (3/36) (2,223/39,340) (19/253) (75/1,176)

The significance of individual main effects and pairwise interaction effects was calculated using 1,000-fold permutation testing. The percentage was calculated as the fraction of
individual SNPs (or SNP pairs) whose significance passes a certain Pcutoff .

effect strength, i.e., I(G1;C), or SNP pairs with pairwise in-
teraction strength, i.e., IG(G1;G2;C), that had a better signif-
icance than a given threshold Pcutoff. The significance of each
SNP (or each pair) was assessed using 1,000-fold permutation
testing. As shown in Table 2, the percentages of SNPs, or SNP
pairs, with significant main effects, or pairwise interaction
effects, that passed the Pcutoff varied among pathways. There
were seven SNPs with significant main effects (P < 0.001)
from five pathways: one in DNA repair, one in hormone,
one in metabolism, three in proliferation, and one in signal
transport. There were 181 significant interacting SNP pairs
(P < 0.001) from seven pathways: 16 in apoptosis, 23 in DNA
repair, 1 in hormone, 39 in immune, 61 in metabolism, 39 in
proliferation, and 2 in signal transport.

Size of the Largest Connected Components in Pathway SEN

To determine whether the interacting pairs are connected
together in the networks, we looked into the size of the largest
connected component in each pathway’s SEN. SNP pairs, as
edges and two end vertices, with significance better than a
given Pcutoff were included in the pathway SEN. The P-value of
a network’s connectivity, i.e., its size of the largest connected
component, was calculated as the fraction of permuted-data
networks whose sizes of the largest connected components
were equal to or larger than that of the actual network.
Pcutoff = 0.001, 0.01, and 0.05 were investigated. When Pcutoff

= 0.001, both DNA repair SEN and proliferation SEN were
found having more vertices on the largest connected com-
ponents than permuted-data networks (P = 0.044 and 0.016,
respectively). The other seven pathways did not show signifi-
cant connectivity at any Pcutoff. Figure 3 shows the structure of
DNA repair SEN (panel A) and proliferation SEN (panel B)
when Pcutoff = 0.001.

Interactions Among Pathways

To untangle the interplay among different pathways, we
also tested for significant pathway interactions. We con-
structed SEN for the whole dataset and counted the frequency
of edges between all pathway pairs. We carried out permu-
tation testing to determine whether SNP-SNP interactions

were more likely to occur between certain pathway pairs or
not. Specifically, we randomly shuffled the SNP-pathway an-
notations for 1,000 times and assessed the frequency of edges
between two particular pathways in the original SEN at each
time. The P-value for a particular pathway pair was com-
puted as the fraction of corresponding edge frequencies on
permuted data that were no smaller than that of the real
data.

To ensure that our results were not biased by the choice
of Pcutoff, we used multiple Pcutoff = 0.001, 0.01, 0.05 and re-
ported findings that were common between different SENs
constructed at various Pcutoff (P < 0.05). As shown in Figure 4,
two pathway pairs, immune and transport, and hormone and
telomere, possessed significantly more edges between them
across all three SENs constructed at different Pcutoff.

Discussion
In this article, we proposed a systematic pathway analysis

approach SF-RF and complemented it with SENs. Most ex-
isting enrichment methods rely on single-marker statistics to
study the abundance of a particular pathway [Beibbarth and
Speed, 2004; Boyle et al., 2004; Khatri and Draghici, 2005] or
to rank all the markers by their significance and then choose
pathways with better rankings [Holden, 2008; Nam et al.,
2010; Subramanian et al., 2005; Wang et al., 2007]. In con-
trast, our method, SF-RF, is able to model the complex rela-
tionships among SNPs within a pathway and the relationships
among pathways, and to take a closer look at the mechanisms
that explain a pathway’s association with a particular disease.
Specifically, SF-RF quantifies the significance of each pathway
without making oversimplified assumptions at the SNP level
or the pathway level. In addition, SEN characterizes potential
factors, i.e., strong main or interaction effects, clustering of
SNPs in an interaction network, and the crosstalk between
different pathways in a global interaction network that could
contribute to the pathway-disease association.

The application of our method to a genetic study of blad-
der cancer demonstrated its ability to identify and elucidate
the highly associated pathways. Using SF-RF, we found four
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A B

Figure 3. SENs of (A) DNA repair and (B) proliferation of the pairwise interaction significance Pcutoff = 0.001. The width of an edge and the size of
a vertex are proportional to their weights. The length of an edge is for layout purposes only. (A) The network has 37 vertices and 23 edges. The most
significant vertex (XRCC3_241) has a weight 0.605% and the most significant edge (XRCC1_07 and XRCC1_399) has a weight 1.716%. The size of the
largest connected component is 6 and is significant compared to permuted-data networks (P = 0.044). (B) The proliferation network has 55 vertices
and 39 edges. The most significant vertex (IGF2AS_04b) has a weight 0.913% and the most significant edge (IFG2R_05 and RERG_30) has a weight
1.189%. The largest connected component has nine vertices and is significantly larger than those of the permuted-data networks (P = 0.016). The
other seven pathways do not have statistically significant connectivity and thus are not shown. The graphs are generated using Graphviz.
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Figure 4. Common significant pathway-pathway interactions. Venn
diagrams illustrating significant pathway-pathway interactions that
were common between different SENs constructed at various Pcutoff.
Two pathway pairs were consistently significant whereas 32 pathway
pairs were not significant in any SEN.

highly associated pathways including neural, hormone, pro-
liferation, and telomere. When analyzing synthetic features
using Kolomogorov-Smirnov test and multivariable logistic
regression, three pathways including neural, telomere, and
proliferation were identified as significant. Moreover, hor-
mone was found significant only when we analyzed SFs us-
ing RF, which may imply the existence of pathway-pathway
interactions. In addition, we examined the mechanisms of
associations using SEN. We found that proliferation had a
significantly higher network connectivity than by chance.
The significant largest connected components suggested the

clustering of interacting SNPs within proliferation, which
may indicate the joint effects of a large set of SNPs. Mean-
while, two pathway pairs, including immune-transport and
hormone-telomere, possessed more edges between them than
by chance, which suggested potential pathway interactions.

By analyzing the results from SF-RF and SEN complemen-
tarily, we hypothesize that different pathways are associated
with bladder cancer with different mechanisms. Neural
is associated mostly through a few pairwise interactions
(Table 2). Telomere is associated by possessing both a few
strong main effect SNPs and a handful of interactions
(Table 2). Proliferation has SNPs of both strong main effects
and clustered interaction effects. In the literature, a number
of studies have reported the associations between bladder
cancer risk and pathway neural [Arum et al., 2010], prolifer-
ation [Lee and Droller, 2000], and telomere [Lin et al., 1996;
McGrath et al., 2007; Shay and Bacchetti, 1997]. In addition,
pathway hormone was also identified when we analyzed SFs
using RF that captures some interactions among variables.
The fact that hormone was detected when using a second layer
of RF but not Kolomogorov-Smirnov test or multivariable
logistic regression suggests that hormone might be involved
through interacting with other pathways. Particularly, we
observed significantly more edges in SENs than by chance
between hormone and telomere. Previous studies have
shown that hormones regulate telomerase activity, which in
turn affects telomere length [Bayne and Liu, 2005; Calado
et al., 2009; Lee et al., 2005]. Telomeres consist of a short DNA
repeat sequence [Blackburn et al., 2006] and a large number
of proteins [Palm and de Lange, 2008], which together form
the protective cap at chromosome ends. It solves two prob-
lems: first, they distinguish chromosome ends from DNA
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double-strand breaks, thereby preventing unwanted DNA-
damage signaling and genome instability; second, they
prevent loss of essential genetic information by providing a
mechanism for telomere-length maintenance in proliferating
cells [Xu et al., 2012]. Changes in telomere functions and the
associated chromosomal abnormalities have been implicated
in human aging and cancer [Smogorzewska and de Lange,
2004]. Specifically, telomere dysfunction or loss can cause
sister-chromatid fusions that are associated with oncogene
amplification [Campbell et al., 2010; Murnane et al., 2012].
The associations between bladder cancer risk and telomere
length [Broberg et al., 2005] or telomerase activity [Gelmini
et al., 2000; Morii et al., 2010] have been reported in several
studies. Whether and how the interplay between those
two pathways contributes to bladder cancer risk should be
further investigated.

Our approach SF-RF has the following advantages. First,
SF-RF serves as an alternative approach to other RF-related
methods for quantifying. In contrast to the PathwayRF pro-
gram [Pang et al., 2006] that ranks pathways by the predictive
power of their SNPs, our approach is able to adjust for path-
way size differences. PathwayRF favors pathways with more
genes [Eichler et al., 2007]. For instance, metabolism, which
has 310 SNPs, shows relatively high oob accuracy yet its P-
value computed using SF-RF and LeFE are not significant,
which highlights the importance of adjusting for pathway
sizes.

Once synthetic features are generated, users can choose
different ML algorithms besides RF to quantify their sig-
nificance. Thus, different from LeFE [Eichler et al., 2007]
that tests the difference of the variable importance distribu-
tion between the candidate pathway and negative controls,
our method relies less on RF variable importance measures
that are known to be unreliable in situations where potential
predictor variables are correlated [Strobl et al., 2008]. Recall
that proliferation possesses both strong main-effect SNPs and
clustered interacting SNPs (Table 2 and Fig. 3). The fact that
SF-RF detected it whereas LeFE did not illustrates the effec-
tiveness of our approach. Second and more importantly, the
construction of synthetic features allows us to analyze multi-
ple potentially related pathways together without making any
assumptions about the relationships among them. Analyzing
pathways jointly is important for two reasons. First, it allows
us to compare the significance of related or overlapping path-
ways. As multiple related or overlapping pathways might all
be significant when being analyzed one by one [Pang et al.,
2006; Eichler et al., 2007], our approach is advantageous that
it can single out the most associated pathway among them
and computes the relative importance of one pathway with
adjustment for others. Second, it allows pathway-pathway in-
teractions instead of assuming that pathways are independent
of each other, which reflects the real biological world better. In
this study, pathway hormone was only identified using SF-RF
but not LeFE. Further SEN analysis showed that there were
significantly more edges than random between hormone and
telomere, which suggested that hormone could be involved
via interacting with telomere. Thus, it is encouraging to see

that our SF-RF was able to identify hormone. These two ad-
vantages distinguish our work the most from previous studies
[Eichler et al., 2007Chung and Chen, 2012; Pang et al., 2006].
Last, by considering the results from SF-RF and SEN together,
not only that we gain confidence about the results, but also we
observe the underlying epistatic interaction space of an asso-
ciated pathway. Whether the association is caused by strong
main effects, strong interaction effects, the clustering of in-
teractions, or just subtle but additive effects, is insightful for
proposing further biological hypotheses.

Among the limitations of this approach is that as the di-
mensionality of the dataset increases, the ability of RF to cap-
ture interactions declines in the absence of strong marginal
effects [Winham et al., 2012]. Therefore, although the num-
ber of SNPs in each pathway is much smaller than that in
the whole dataset, SF-RF might miss SNP interactions in
pathways that have many genes. We expect that SF-RF will
perform better at testing for specific pathways that do not
have as many genes as generic pathways. In addition, this al-
gorithm is under development and no user-friendly interface
is available yet. However, given the randomForest package in
R, it is not hard to carry out SF-RF analysis on a new dataset.
Notably, Mitchell released an R package SPRINT that is a
parallel implementation of RF [Mitchell, 2011], which could
help reduce the runtime of SF-RF analyses.

Future work will include investigating interactions between
pathways. It will be interesting to see whether the synergy
between synthetic features generated using SF-RF can reveal
interactions between pathways and how well it correlates with
what we observe in global SEN. Moreover, we would like to
analyze the pathway SEN using other network properties such
as motif and modularity [Newman, 2010]. Motifs are patterns
of interconnection occurring in the networks at numbers that
are significantly higher than those in the randomized network
[Milo et al., 2002]. Modularity quantifies to what extent a
network is divided into communities [Newman, 2006]. Both
of them can serve as tools to untangle relationships within
different pathways. Finally, it would be interesting to apply
SF-RF method to quantitative phenotypes such as survival
time. Multiple phenotypes may have dependencies among
themselves. By applying SF-RF to multiple phenotypes, we
can gain insights on which pathway is the most associated
with a particular phenotype.

Conclusion
In conclusion, we presented a novel framework SF-RF for

pathway analysis. By embracing the complex relationships at
both the SNP level and the pathway level, our approach is ef-
ficient and effective at finding the most associated pathways.
We applied it to a bladder cancer dataset and complemented
it with SEN to gain further insights on how a certain path-
way is associated with a phenotype. Our results were both
consistent with other independent findings and suggesting
novel and plausible hypotheses. As a model-free and non-
parametric approach, our method will be applicable to large-
scale dataset given sufficient computational power. With
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considerable potential for extension, and especially how it
can shape our understanding of pathways, we think our ap-
proach will find many useful applications in a wide range of
genomic and metabolic data.
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